1.高三数学三角函数专题知识点

2.2022高中三角函数知识点

3.高中的三角函数知识点总结

4.高考数学函数解析式的求解及其常用方法知识点归纳

5.高考数学知识点之二次函数

函数高考知识点总结_数学高考函数知识点

在数学中,二次函数的最高阶必须是二次的。在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。二次函数知识点 总结 有哪些?一起来看看二次函数知识点总结,欢迎查阅!

数学二次函数知识点归纳

计算 方法

1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a―常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴ ;⑵若 , ,…, ,则 (a―接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:

三、 应用举例(略)

初三数学知识点:第四章 直线形

★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆ 内容提要☆

一、 直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、 三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②__线的交点―三角形的×心③性质

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法―反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、 四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形――↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

二次函数知识点总结

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现.

二次函数知识点总结大全

二次函数概念

一般地,把形如y=ax?+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

二次函数公式大全

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax?+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax?;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)?;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b?;)/4a x1,x2=(-b±√b?;-4ac)/2a

III.二次函数的图象

在平面直角坐标系中作出二次函数y=x的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b?;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b?-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b?-4ac>0时,抛物线与x轴有2个交点。

Δ= b?-4ac=0时,抛物线与x轴有1个交点。

Δ= b?-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax?;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax?;+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

二次函数知识点总结相关 文章 :

★ 初中数学二次函数知识点总结

★ 初中数学一次方程、二次函数与不等式知识汇总

★ 高考数学函数知识点总结

★ 高中数学函数知识归纳总结

★ 九年级数学二次函数复习题

★ 高一数学知识点总结

★ 初中数学知识点总结梳理2020

★ 初中数学知识点总结梳理

★ 初中数学知识点总结及解法方法

★ 初三数学知识点考点归纳总结

高三数学三角函数专题知识点

一次函数知识点总结

 函数类型一向是考试的重点,一次函数更是函数的基础,下面就随我一起去阅读一次函数知识点总结,相信能带给大家启发。

一次函数知识点总结

 一、定义与定义式:

 自变量x和因变量y有如下关系:

 y=kx+b

 则此时称y是x的一次函数。

 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k?0)

 二、一次函数的性质:

 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)

 2.当x=0时,b为函数在y轴上的截距。

 三、一次函数的图像及性质:

 1.作法与图形:通过如下3个步骤

 (1)列表;

 (2)描点;

 (3)连线,可以作出一次函数的图像?一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

 3.k,b与函数图像所在象限:

 当k>0时,直线必通过一、三象限,y随x的增大而增大;

 当k<0时,直线必通过二、四象限,y随x的增大而减小。

 当b>0时,直线必通过一、二象限;

 当b=0时,直线通过原点

 当b<0时,直线必通过三、四象限。

 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

 四、确定一次函数的表达式:

 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

 (1)设一次函数的`表达式(也叫解析式)为y=kx+b。

 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ? ① 和 y2=kx2+b ? ②

 (3)解这个二元一次方程,得到k,b的值。

 (4)最后得到一次函数的表达式。

 五、一次函数在生活中的应用:

 1.当时间t一定,距离s是速度v的一次函数。s=vt。

 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

 六、常用公式:

 1.求函数图像的k值:(y1-y2)/(x1-x2)

 2.求与x轴平行线段的中点:|x1-x2|/2

 3.求与y轴平行线段的中点:|y1-y2|/2

 4.求任意线段的长:?(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

;

2022高中三角函数知识点

已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。我高二频道为你整理了《 高二数学 三角函数知识点》希望可以帮到你!

高三数学 三角函数专题知识点

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高三数学三角函数专题知识点

函数名正弦余弦正切余切正割余割

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数sinθ=y/r

余弦函数cosθ=x/r

正切函数tanθ=y/x

余切函数cotθ=x/y

正割函数secθ=r/x

余割函数cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

万能公式为:

设tan(A/2)=t

sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)

tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)

cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)

就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

高三数学三角函数专题知识点

三角函数关系

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscαcα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α)

高三数学三角函数专题知识点相关 文章 :

★ 高考数学三角函数重点考点归纳

★ 高考数学三角函数知识点总结

★ 高三数学解三角函数方法总结

★ 高三文科数学三角函数知识点归纳

★ 2017高考数学三角函数知识点总结

★ 高中数学必修一三角函数知识点总结

★ 高中必修4数学三角函数知识点归纳

★ 高三数学专题复习知识点

★ 高中三角函数知识点归纳

★ 高考数学常用三角函数公式总结

高中的三角函数知识点总结

2021高中三角函数知识点有哪些你知道吗?我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。一起来看看2021高中三角函数知识点,欢迎查阅!

高中三角函数知识点

角的概念的'推广.弧度制.

任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

正弦定理.余弦定理.斜三角形解法.

考试要求

(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cotα=1”.

高中数学三角函数知识点 总结

一、锐角三角函数公式

sin=的对边/斜边

cos=的邻边/斜边

tan=的对边/的邻边

cot=的邻边/的对边

二、倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))

三、三倍角公式

sin3=4sinsin(/3+)sin(/3-)

cos3=4coscos(/3+)cos(/3-)

tan3a=tanatan(/3+a)tan(/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asin+Bcos=(A2+B2)(1/2)sin(+t),其中

sint=B/(A2+B2)(1/2)

cost=A/(A2+B2)(1/2)

tant=B/A

Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B

四、降幂公式

sin2()=(1-cos(2))/2=versin(2)/2

cos2()=(1+cos(2))/2=covers(2)/2

tan2()=(1-cos(2))/(1+cos(2))

推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos2

1-cos2=2sin2

1+sin=(sin/2+cos/2)2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(3/2)-sina]

=4sina(sin60-sina)

=4sina(sin60+sina)(sin60-sina)

=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(3/2)]

=4cosa(cosa-cos30)

=4cosa(cosa+cos30)(cosa-cos30)

=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-

30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

五、半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin2(a/2)=(1-cos(a))/2

cos2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

六、三角和

sin(++)=sincoscos+cossincos+coscossin

-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

七、两角和差

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

sin()=sincoscossin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

八、和差化积

sin+sin=2sin[(+)/2]cos[(-)/2]

sin-sin=2cos[(+)/2]sin[(-)/2]

cos+cos=2cos[(+)/2]cos[(-)/2]

cos-cos=-2sin[(+)/2]sin[(-)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

九、积化和差

sinsin=[cos(-)-cos(+)]/2

coscos=[cos(+)+cos(-)]/2

sincos=[sin(+)+sin(-)]/2

cossin=[sin(+)-sin(-)]/2

十、诱导公式

sin(-)=-sin

cos(-)=cos

tan(—a)=-tan

sin(/2-)=cos

cos(/2-)=sin

sin(/2+)=cos

cos(/2+)=-sin

sin(-)=sin

cos(-)=-cos

sin(+)=-sin

cos(+)=-cos

tanA=sinA/cosA

tan(/2+)=-cot

tan(/2-)=cot

tan(-)=-tan

tan(+)=tan

诱导公式记背诀窍:奇变偶不变,符号看象限

十一、万能公式

sin=2tan(/2)/[1+tan(/2)]

cos=[1-tan(/2)]/1+tan(/2)]

tan=2tan(/2)/[1-tan(/2)]

十二、 其它 公式

(1)(sin)2+(cos)2=1

(2)1+(tan)2=(sec)2

(3)1+(cot)^2=(csc)^2

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=n(nZ)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC

(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0

cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0以及

sin2()+sin2(-2/3)+sin2(+2/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

学好函数的 方法

一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则

而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

二、牢记几种基本初等函数及其相关性质、图象、变换

中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题

翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

2021高中三角函数知识点相关 文章 :

★ 高中三角函数知识点归纳

★ 2021年高三数学知识点总结

★ 高考数学知识点2021

★ 高中数学必修一三角函数知识点总结

★ 2017高考数学三角函数知识点总结

★ 怎么样学好高中数学三角函数

★ 高中数学必修四三角函数万能公式归纳

★ 高中必修4数学三角函数知识点归纳

★ 高三文科数学三角函数知识点归纳

★ 高一必修一三角函数知识点总结

高考数学函数解析式的求解及其常用方法知识点归纳

(1)三角比转换法:①熟记公式:同角三角比;诱导公式;两角和差公式;倍角公式;半角公式;万能公式;辅助角公式;积化和差公式;和差化积公式.②角度变换:直接转换(α=2α-α,α=(α+β)-β等);公式变换;诱导公式;特殊值变角;三角形中边与角的互换.(2)图像变换法:将函数y=f(x)按一定方式变换:①对称变换:y=f(-x)或y=-f(x)②平移变换:(a).y=f(x+a)或y=f(x)

+b③伸缩变换:y=f(ωx)或y=Af(x)④绝对值变换:y=f(|x|)或y=|f(x)|.(例略)△.弧度制和角度制的互换及弧长、圆弧面积的计算.△.最简三角方程和反三角函数.★.欧拉——首先提出了弧度制思想.

高考数学知识点之二次函数

 函数解析式与函数式相类似,都是求出函数x与y的函数关系,也是高考数学常考考点,下面是我给大家带来的高考数学函数解析式的求解及其常用方法知识点归纳,希望对你有帮助。

 高考数学函数解析式的求解及其常用方法知识点(一)

 函数解析式的常用求解方法:

 (1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

 (2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得

 ,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

 (3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。

 (4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

 (5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

  高考数学函数解析式的求解及其常用方法知识点(二)

 求函数解析式是中学数学的重要内容,是高考的重要考点之一。本文给出求函数解析式的基本方法,供广大师生参考。

 一、定义法

 根据函数的定义求其解析式的方法。

 例1. 已知

 ,求

 。

 解:因为

 二、换元法

 已知

 看成一个整体t,进行换元,从而求出

 的方法。

 例2. 同例1。

 解:令

 ,所以

 ,所以

 。评注:利用换元法求函数解析式必须考虑?元?的取值范围,即

 的定义域。

 三、方程组法

 根据题意,通过建立方程组求函数解析式的方法。

 例3. 已知定义在R上的函数

 满足

 ,求

 的解析式。解:

 , ①

 ②

 得

 ,所以

 。

 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。

 四、特殊化法

 通过对某变量取特殊值求函数解析式的方法。

 例4. 已知函数

 的定义域为R,并对一切实数x,y都有

 ,求

 的解析式。解:令

 ,令

 ,所以

 ,所以

 五、待定系数法

 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。

 例5. 已知二次函数

 的二次项系数为a,且不等式

 的解集为(1,3),方程

 有两个相等的实根,求

 的解析式。解:因为

 解集为(1,3),设

 ,所以

 ① 由方程

 得

 ②

 因为方程②有两个相等的实根,

 所以

 ,即

 解得

 又

 ,将

 ①得

  点击下一页分享更多?高考数学函数解析式的求解及其常用方法知识点归纳

 二次函数的基本表示形式为y=ax+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条 对称轴与y轴平行或重合于y轴的 抛物线。下面我给大家介绍高考数学知识点:二次函数,赶紧来看看吧!

 高考数学知识点之二次函数

 I.定义与定义表达式

 一般地,自变量x和因变量y之间存在如下关系:

 y=ax^2+bx+c

 (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

 则称y为x的二次函数。

 二次函数表达式的.右边通常为二次三项式。

  II.二次函数的三种表达式

 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

 顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

 交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

 注:在3种形式的互相转化中,有如下关系:

 h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

III.二次函数的图像

 在平面直角坐标系中作出二次函数y=x^2的图像,

 可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

 1.抛物线是轴对称图形。对称轴为直线

 x=-b/2a。

 对称轴与抛物线唯一的交点为抛物线的顶点P。

 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

 2.抛物线有一个顶点P,坐标为

 P(-b/2a,(4ac-b^2)/4a)

 当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

 3.二次项系数a决定抛物线的开口方向和大小。

 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

 |a|越大,则抛物线的开口越小。

 4.一次项系数b和二次项系数a共同决定对称轴的位置。

 当a与b同号时(即ab>0),对称轴在y轴左;

 当a与b异号时(即ab<0),对称轴在y轴右。

 5.常数项c决定抛物线与y轴交点。

 抛物线与y轴交于(0,c)

 6.抛物线与x轴交点个数

 Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

 Δ=b^2-4ac=0时,抛物线与x轴有1个交点。