高考向量知识点_高考向量积么
1.北京高考是否可以使用向量混合积求三棱锥体积?
2.高中数学向量公式有哪些
3.向量的乘积公式是什么?
1.与向量概念有关的问题
⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“ > ”错了,而| |>| |才有意义.
⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量.
⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件.
⑷单位向量是模为1的向量,其坐标表示为( ),其中 、 满足 =1(可用(cos ,sin )(0≤ ≤2π)表示).
⑸零向量 的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数.
⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段.
2.与向量运算有关的问题
⑴向量与向量相加,其和仍是一个向量.
①当两个向量 和 不共线时, 的方向与 、 都不相同,且| |<| |+| |;
②当两个向量 和 共线且同向时, 、 、 的方向都相同,且 ;
③当向量 和 反向时,若| |>| |, 与 方向相同 ,且| |=| |-| |;
若| |<| |时, 与 方向相同,且| + |=| |-| |.
⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算.
⑶围成一周首尾相接的向量(有向线段表示)的和为零向量.
如, ,(在△ABC中)
.(□ABCD中)
⑷判定两向量共线的注意事项
如果两个非零向量 , ,使 =λ (λ∈R),那么 ‖ ;
反之,如 ‖ ,且 ≠0,那么 =λ .
这里在“反之”中,没有指出 是非零向量,其原因为 =0时,与λ 的方向规定为平行.
⑸数量积的8个重要性质
①两向量的夹角为0≤ ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数.
②设 、 都是非零向量, 是单位向量, 是 与 的夹角,则
③ (∵ =90°,
④在实数运算中 =0 =0或b=0.而在向量运算中 = = 或 = 是错误的,故 或 是 =0的充分而不必要条件.
⑤当 与 同向时 = ( =0,cos =1);
当 与 反向时, =- ( =π,cos =-1),即 ‖ 的另一个充要条件是 .
特殊情况有 = .
或 = = = .
如果表示向量 的有向线段的起点和终点的坐标分别为( , ),( , ),则 =
⑥ 。(因 )
⑦数量积不适合乘法结合律.
如 (因为 与 共线,而 与 共线)
⑧数量积的消去律不成立.
若 、 、 是非零向量且 并不能得到 这是因为向量不能作除数,即 是无意义的.
6.与平面向量基本定理及平移有关的问题
⑴平面向量基本定理是平面向量坐标表示的基础,它表明同一平面内的任一向量都可表示为其他两个不共线向量的线性组合.
⑵平面向量基本定理可联系物理学中力的分解模型进行理解。
⑶点的平移公式:
点 按给定平移向量 平移后得新点 的坐标公式为
反之,由新点求旧点公式变为
由新旧两点求平移向量公式为
⑷图象(图形)平移:
给定平移向量 = ,由旧解析式求新解析式,用公式
代入旧解析式中,整理得到;
由新解析式求旧解析式,用公式
代入新式,整理得到。
应用以上公式要注意公式中平移前的坐标 、平移后的坐标 、平移向量坐标 都在同一坐标系中。
确定平移向量一般可采用如下两种方法:
其一,配凑法:按题目要求进行配凑,如将 化简,即可配凑为: 则公式为 此时平移向量为
其二,待定系数法:按要求代入公式,再根据题目要求求出
经典题例
例1 是不共线的两个向量,
已知
若 三点共线,求 值.
思路分析由于 三点共线,因此必存在实数 ,使 ,因而可根据已知条件和向量相等的条件得到关于 的方程,从而求 .
解:略∴ =-1.
点评
用向量共线的充要条件有时可以很容易解决几何中的三点共线问题.
例2证明三角形三条高线交于一点.
思路分析此题可利用“形”、“数”结合的方法,通过直角坐标系将几何图形数字化,则问题解决更简洁、更易接受.
证明:如图建立直角坐标系,
设
所以 是 上的高,故 的三条高交于一点 .
点评本题把两直线是否垂直的问题转化为两个非零向量的数量积是否为零的问题.
例3已知向量
满足条件 , ,
求证:△ 是正三角形.
思路分析观察条件中的两个等式,联系向量模及加法的几何意义,可构造图形巧证.如图1.又据条件易知O为定点,故可适当选取坐标系,借助向量的坐标运算,将几何问题代数化.如图2.也可联想三角知识进行坐标选取.如 使得选取具有任意性.且巧妙运用了三角变形.证明 为正三角形可从边或角的关系着手,联系两个向量数量积的有关知识可获得两种证法.
证法一:如图1略.
证法2如图2略.
证法三:据| |= ,
令
由 得
可求得| |= ,所以 为正三角形.
证法四:设
由已知得 | |= ,所以 为正三角形。
证法五:同证法四求得 ,于是 = 所以 ,由此可证 为正三角形.
点评以上五种证法,不仅实现了向量重要知识的一次大聚会,而且通过向量与三角、几何联姻,开阔了学生的眼界,培养了综合运用知识的能力.
例4如图,已知点 是△ 的重心,
⑴求 ;
⑵若 过△ 的重心 ,且 求证:
思路分析充分运用向量的几何形式运算.及向量平行的定理及推论,把相关向量用已知向量表示即可.
解:⑴
⑵显然
因为 是 的重心,
所以 =
由 、 、 三点共线,有 共线,所以,有且只有一个实数 ,
而 = - =
,
所以
= .又因为 、 不共线,所以
,消去 ,整理得3 = ,故 .
点评建立 与 的关系关键是由 三点共线得出.为此要熟练运用已知向量表示未知向量.
例5如图,直三棱柱 — ,底面 中, ,∠ °,棱 , 分别是 , 的中点. z
⑴求 的长;
⑵求 〈 , 〉的值;
⑶求证 ⊥ .
思路分析以 为原点建立空间坐标系,写出有关点的坐标,并进行有关运算.
解:如图,以 为原点建立空间直角坐标系O- .
⑴依题意得 =(0,1,0), =(1,0,1).
∴| |=
= .
⑵依题意得A1(1,0,2),B(0,1,0),C(0,0,0), B1(0,1,2).
∴ =(1,-1,2), =(0,1,2).
| |= ,| |= ,
∴ 〈 , 〉 =
⑶依题意得 (0,0,2),M(
=(-1,1,-2), =( .
= .
∴ ⊥ ,∴ ⊥C .
点评利用题中已知条件,选取恰当点建立空间坐标系,并写出相应点的坐标是这类题的关键.
例6四棱锥P—ABCD中,底面ABCD是一个平行四边形, , ={4,2,0}, ={-1,2,-1}.
⑴求证:PA⊥底面ABCD;
⑵求四棱锥P—ABCD的体积;
⑶对于向量 定义一种运算:
( × =
试计算( × ) 的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算( × ) 的绝对值的几何意义.
思路分析根据所给向量的坐标,结合运算法则进行运算.
解:⑴∵ ∴AP⊥AB
又∵ AP⊥AD,∵AB、AD是底面ABCD上的两条相交直线,∴AP⊥底面ABCD。
⑵设 与 的夹角为 ,则
V= | | |=
⑶|( × ) |=|-4-32-4-8|=48.
它是四棱锥P—ABCD体积的3倍.
猜测:| ( × ) |在几何上可表示以AB、AD、AP为棱的平行六面体的体积(或以AB、AD、AP为棱的直四棱锥的体积)。
点评本题考察空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量夹角运算公式和直线与平面垂直的判定定理、棱锥的体积公式等.
例7如图,已知椭圆 ,直线 : P是 上一点,射线OP交椭圆与点R,又点Q在OP上,且满足|OQ||OP|= .当点P在L上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.
思路分析将 看作向量,则它们共线而切同向,利用向量共线的充要条件,结合平面向量的坐标表示可迅速解题.
解:设
∵ 、 同向,且|OQ||OP|=
代入L方程得 ⑴
同向
代入椭圆方程得 ⑵
由①、②得 不全为0), 点Q的轨迹为椭圆 (去掉原点).
点评解析几何解答题中以向量知识为主线,用向量坐标形式表示已知条件可达到解题目的.
例8从抛物线 外的一点P(a,b)向该抛物线引切线PA,PB.
① 求切点A,B的坐标. (其中A的x坐标大于B的x的坐标).
② 求 的值.
③ 当∠APB为锐角时,求点P的纵坐标的取值范围.
解:① 从 得 =2x,因此设切点的x坐标为 ,切线方程便为
由于该切线通过P点,从而 由于引出两条切线,故 >0所以切点的坐标为A
②
④ 若∠APB为锐角,则有 >0,所以4b+1<0因此P的纵坐标的取值范围是b<-
热身冲刺
一.选择题
1.已知向量 和 反向,则下列等式成立的是( ).
A.| | -| |=| |
B.
C. | |
D.
2.已知向量 ,其中 则满足条件的不共线的向量共有( ).
A.16个 B.13个 C.12个 D.9个
3.函数 的图象按向量 平移后,所得函数的解析式是 则 等于( ).
A. B.
C. D.
4.已知若 和 夹角为钝角,则 的取值范围是( )
A. > B. ≥ < ≤
5.已知向量 = , = 与 的夹角为60°,则直线 与圆 的位置关系是( ).
A. 相切 B.相交 C.相离 D.随α、β的值而定
6.平面上有四个互异的点A、B、C、D,已知 则 的形状是( ).
A. 直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形
7.已知 中,点D在BC边上,且 则 的值是( ).
A. B. C. D.0
8.已知A、B、C三点共线,且A、B、C三点的纵坐标分别为2、5、10,则A点分 所得的比是( ).
A. B. C. D.
9.下列说法正确的是( )
A. 任何三个不共线的向量都可构成空间的一个基底.
B. 单位正交基底中的基向量模为1,且互相垂直.
C. 不共面的三个向量就可构成空间的单位正交基底.
D. 只要对空间一点P存在三个有序实数x,y,z,使O,A,B,C四点满足 则 就构成空间的一个基底.
10.同时垂直于 的单位向量是( )
A. B.( C.( )D.( )或( )
11.若 ,则| |的取值范围是( )
A.[0,5] B.[1,5] C.(1,5) D.[1,25]
12.已知 若 共同作用在一个物体上,使物体从点 移到点 ,则合力所做的功为( )
A. 10 B.12 C.14 D.16
二.填空题
13.若对 个向量 … 存在 个不全为零的实数 …, ,使得 …,+ 成立,则称向量 … 为“线性相关”.依此规定,能说明 “线性相关”的实数 依次可以取 .(写出一组数值即可,不必考虑所有情况)
14.若直线 按向量 平移后与圆 : 相切,则实数m的值等于 .
15.已知 中, <0, =
则 与 的夹角为 .
16.已知 ,则以 、 为边的平行四边形的两条高的长 .
三.解答题
17.在平行四边形ABCD中,A , ,点M是线段AB的中点,线段CM与BD交于点P.
⑴若 求点C的坐标;
⑵当| |=| |时,求点P的轨迹.
18.已知 且 与 之间满足关系: 其中k>0.
⑴用k表示
⑵求 的最小值,并求此时 与 夹角 的大小. C A
19.如图,正方形 与等腰直角 G
△ ACB互相垂直,∠ACB= ,E、F C A
分别是AB、BC的中点,G是 上的点. F E
⑴如果 试确定点 的位置; B
⑵在满足条件⑴的情况下,试求 < >的值.
20.如图,已知三棱锥P-ABC在某个
空间直角坐标系中, P
⑴画出这个空间直角坐标系,并指 A C
出 与 轴的正方向的夹角.
⑵求证: ; B
⑶若M为BC的中点,
求直线AM与平面PBC所成角的大小.
答案
选择题答案:
1.C; 2.C; 3.B; 4.B; 5.C; 6.B; 7.D; 8.C; 9.B; 10.D; 11.B; 12.C
填空题答案:
13.只要写出-4c,2c,c中一组即可. 14.3或13.
15. . 16. ;
解答题答案:
17.⑴设点C坐标为( ),又 即 即点 .
⑵设 则
=3
ABCD为菱形.
⊥ 即
故点P的轨迹是以(5,1)为圆心,2为半径去掉与直线y=1的两个交点.
18. ⑴ 两边平方,得 ,
即
⑵ 从而 ,∴ 的最小值为 ,此时 , ,即 与 夹角为 .
19. ⑴易知
以C为坐标原点,建立空间直角坐标
系C-x,y,z,,设AC=CB=a.
AG=x,则A(0,a,0), (0,0,a),
G(0,a,x),E( ).
G为 的中点.
〈 〉=
20. ⑴以A为坐标原点O,以AC为Oy轴,以AP所在直线为Oz轴, 与Ox轴的正向夹角为30°;
⑵由 去证;
⑶连AM、PM,可证∠AMP为AM 与平面PBC所成角,又n=
故所成角为45°.
北京高考是否可以使用向量混合积求三棱锥体积?
[a(a-b)]^2≠a^2(a^2-2ab+b^2)!!(这是概念错误!)
[a(a-b)]^2=a^2(a^2-2ab+b^2)×cos²<a,a-b>
=(3-2√2cos<a,b>)cos²<a,a-b>=0
cos²<a,a-b>=0.?<a,a-b>=90°,如图<a,b>=45°
(3-2√2cosα)=0产生的增根
高中数学向量公式有哪些
很显然是可以的。。高考是选拔人才的,解题本来方法就很多,很灵活的,只要你能保证你的方法没问题,最主要的是答案正确,就可以了~~~~放心吧~·
祝君高考顺利! 向大学前进吧
向量的乘积公式是什么?
设a=(x,y),b=(x',y').
1、向量的加法
向量的加法满足平行四边形法则和三角形法则.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
3、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π].
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a·b=x·x'+y·y'.
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a∥b〈=〉a×b=0.
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的.
祝学习进步 步步高升
两个向量相乘公式:向量a?向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。 ? ?
向量的乘积公式
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b
向量积公式
向量积|c|=|a×b|=|a||b|sin<a,b>
向量相乘分内积和外积
内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)
外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。
另外 外积可以表示以a、b为边的平行四边形的面积
=两向量的模的乘积×cos夹角
=横坐标乘积+纵坐标乘积
扩展资料
向量的定义:是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。
两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x'+y·y'。
两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。