1.2019年江苏省数学高考题第九题详解

2.2019年辽宁高考数学试卷试题及答案解析(答案WORD版)

3.最新2019年高考数学分类汇编(22个专题)试题(236页)

4.2019年天津高考数学难度解析及数学试卷答案点评(word文字版下载)

5.2019年福建高考数学试卷试题及答案解析(答案WORD版)

2019年江苏省数学高考题第九题详解

2019高考数学题答案-高考试题2019高考数学

2019年江苏省高考数学第9题的答案为10。

具体解法如下:

首先,本题需要运用的公式为:长方体体积V=S(底面面积)*h(高),圆锥体体积V=1/3*S(底面面积)*h(高)。

已知以上两个公式,解题时便可以运用两个公式之间的关系和题意进行解答。

其次,已知点E为CC1的中点,那么EC=1/2*CC1=1/2*h,这一步等量代换是解题的关键。接下来,继续利用等量代换思想,SBCD=1/2S(底面面积),当运用等量得出以上步骤后,再思考下一步。

接下来,已知V(圆锥)=1/3*S(BCD)*h(EC1),接下来代入上一步所求的式子,即:V(圆锥)=1/3*S(BCD)*h(EC1)=1/3*1/2*S(底面面积)*1/2*h(高)=1/12*S(底面面积)*h(高),现在已经将未知量转化为已知量了。

最后,已知S(底面面积)*h(高)=V(长方体)=120,那么1/12*S(底面面积)*h(高)=1/12*V(长方体)=1/12*120=10,这也就是本题的最终答案。

这道题的解题技巧在于等量代换将未知量变为已知量,虽然未知每个棱的棱长和底面积,但是通过总体积的量以及面积、棱长之间的等价关系,足以判断出圆锥的体积。

本题存在易马虎的点在于:圆锥体积没有乘1/3,这是很多人会犯的错误。

2019年辽宁高考数学试卷试题及答案解析(答案WORD版)

辽宁数学文科试卷首次用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。

以往辽宁的数学自主命题卷,都是在选择最后一题与填空的最后一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,的平均分也会比有所提高。

本溪市第一中学的数学老师介绍,高考数学卷,比较适合基础扎实的中等学生答卷。同时,尖子生也能发挥出应有的水平。但是拿到真正的高分也并非易事,因为的试题在命题形式上更加新颖灵活,有一定创新。

理科数学试卷中,解析题第17题是数形结合题,第18题是茎叶图,和往常略有变化。19题立体几何中的第一问也出现了较为冷门的作图题。平时考查立体几何的首问时,以证明平行、垂直或是求体积居多,作图题平时训练相对少,有些考生因为陌生而感到不适应。

总体来说,的语文与数学科目的总体风格都是着重考生对知识的综合掌握与运用能力,在维持试卷难度系数总体平衡的情况下,以更加灵活的命题考察学生的应变与知识运用能力。

最新2019年高考数学分类汇编(22个专题)试题(236页)

高中数学合集百度网盘下载

链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集。

2019年天津高考数学难度解析及数学试卷答案点评(word文字版下载)

纵观天津高考数学试卷,笔者总体感觉在引入新鲜元素的同时也保留了天津本地稳定为主的特征,试题简洁明快,特色鲜明,平凡问题考验真功夫,在考查基础知识的同时注重对思想方法与能力的考查,试卷从试题的综合性、应用性和创新性的角度设计了由易到难的整体布局,试题的难易分布梯度较为平缓,试题情景设置合理,紧扣教材选题的同时也有着相当的创新要素,对于考生能力的要求进一步提高。与2013年相比,今年试卷总体难度稍有上升。

 今年高考试卷结构上很好地秉承了天津高考以稳为主的命题思路,题型分布和考点设置上没有太大变化,严格依照《考试说明》中规定的考查内容,准确把握考查要求,对基础知识的考查既注重全面又突出重点。

 试卷每种题型均设置了数量较多的基础题,许多试题都是考查单一的知识点或是在最基础的知识交汇点上设置,例如试卷中的选择题第1、2、3、4题,填空题第9、10、11、12题,这部分试题就是通常意义上的送分题,考查考生的基本功,需要牢牢把握。

 试卷还注意确保支撑数学知识体系的主干内容(如三角函数与平面向量、概率统计、立体几何、解析几何、数列和函数与导数)占有较高的比例。

 下表是近四年天津高考对各主干模块的考查分值统计:

 通过上表可以看出,我们会发现三角函数等几大板块部分作为高中学习的绝对重点,几年来总体权重变化也不是特别明显。这也说明考生备考要依纲靠本,把精力更多地投放在考纲中的重点基础知识进行针对性复习。

 今年高考试卷依然突出了考教一致这一原则。试卷中选题很多是源于教材,有些试题可看出与教材中的例题、练习和习题融合、改造的痕迹。这种做法有利于中学教学回归教材,

 真正实现教什么考什么,同时也要求今后的同学在学习或是备考时注意到教材的重要作用,针对教材知识进行思考综合。

  一、中等题目减少,强调通性通法

 2014天津高考还有一个显著的特征是试卷中等题比重在下降,在保证良好区分度与选拔功能的前提下逐步回归基础。在试题命题上注重解题思路起点低,入口宽,更加强调“通性通法”在解题中的运用,要求运用基本概念分析问题,运用基本公式运算求解,利用基本定理推理论证,这些要求在各题中都有所体现,但各有不同侧重。同时,还要求考生利用基本数学思想方法寻找解题思路,如试卷第7题需就题目中的绝对值来进行分类讨论分析,而第14题则需用到转化化归思想将函数零点问题转化为函数图象交点问题来考虑。试卷强调通性通法,有利于引导中学数学教学回归基础。

二、注重能力立意,更加注重创新

 天津数学试题体现了《考试说明》规定的各项能力要求,运算求解能力贯穿试卷始终,空间想象能力考查也达到一定深度,推理论证能力和抽象概括能力依然是考查的重点,在区分考生时起到重要作用。试卷中依然注重应用意识与创新意识的考查,如第16题,以实际问题为背景,考查概率知识在实际问题中的简单应用;第7、14、20题构思与设问较为新颖,考查了学生的创新意识。

 除以上几点外,今年天津卷最大的亮点在于引入了创新题型。此类题型在北京等其他省市经过多年尝试与摸索已经初步成型,并已逐渐形成一种命题趋势。这类题型的特征在于题干比较抽象,需要考生具有较强的理解力,同时在准确理解题意的基础上综合使用相应的知识进行解题。如第19题,在数列问题中引入了集合环境,以全新的角度设置问题,重在考查考生对设问的理解。第1问枚举帮助考生理解题意,而第2问的新意在于要求考生构造二者差值,这是对其不等关系进行实质性分析的基础,而对于该差值的极端化处理则是放缩法证明不等式的基本技巧。此题要求考生具备较强的信息转译能力和严密论证能力,是很好的创新试题。在天津以往的高考中压轴题基本上还是以常规题型为主,很少涉及这类创新题。

 由以上变化我们不难看出,今后的天津高考将会坚持并进一步提高对应用意识和创新意识的考查力度,这也要求本地考生在学习备考过程中要把眼界放开,在立足教材以及基础题型的同时要兼顾创新意识的培养。创新题型作为全国各地高考的一个趋势,今后也有望在天津高考中占据一席之地,也希望本地考生提前做好准备。

三、难度区分合理,有利于高考选拔

 天津高考数学试题分布由易到难、循序渐进,选择填空题重点考查基础知识和基本运算,解答前四题重点考查综合运用基础知识及基本方法的能力,后两道重点考查学生的思维能力与探究能力。试卷整体难度分布比较平缓,计算量适中,各类试题也是由易到难,具有较好的梯度,从而实现高考择优录筛选考生的根本目的。

 试卷中通过合理设置选择填空题的难度,达到了考查考生能力的目的;而通过解答题设问由浅入深的设置,也加强了对不同层次考生的区分功能,如第18、20题,都是上手相对容易,但深入又有一定难度。如第20题,题干简洁,设问大气,学生审题不会有什么困难,第1问要求考生清楚函数单调性与零点存在性之间的关系,并由此建立不等式确定参数取值范围;但后两问要探究两根之比与两根之和的变化规律,就需要考生考虑到由前问结论中参数的取值范围,将其与函数值域进行联系,从而根据零点处参数的等量关系进行函数构造。整体上第2问借助了第1问的结论,第3问又借助了第2问的结论,命题上环环相扣,逻辑清晰,要求考生具有较强的抽象概括、推理论证以及分析问题解决问题的能力,同时考查学生的直观意识,具有很好的区分度与选拔性。

 以上是笔者对于今年高考数学试卷的一些分析,可以看出试卷本身十分成功,可见命题人出题时考虑问题之周全。对于考生来说,只要考前复习充分,考试心态平和,相信都能取得良好的结果。同时试卷中体现出的诸多特点与变化,也值得今后的考生多加注意和思考。

 最后,笔者衷心祝愿广大学子能取得优异的成绩,考入理想的大学。同时希望决战2015高考的新高三同学能倍加努力,稳扎稳打,在高考中也取得优异的成绩。

2019年福建高考数学试卷试题及答案解析(答案WORD版)

福建高考数学试卷试题及答案解析1.关注基础,凸显平稳

命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。

与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。

2.注重综合,适度创新

命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。

命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等差数列和等比数列的定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。

3.依托本质,突出能力

命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。

4.强调应用,彰显选拔

命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。

命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。

此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。