湖北高考数学解析_湖北高考数学解析真题
1.湖北省今年高考数学难吗
2.湖北高考数学的压轴题的某个步奏
3.湖北2023年高考数学难吗
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
本试卷共4页,满分150分,考试时间120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的
1.如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3
B.5
C.6
D.10
2.将的图象按向量a=平移,则平移后所得图象的解析式为
A.
B.
C.
D.
3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n
②m⊥n m'⊥n'
③m'与n'相交m与n相交或重合
④m'与n'平行m与n平行或重合
其中不正确的命题个数是
A.1
B.2
C.3
D.4
5.已知p和q是两个不相等的正整数,且q≥2,则
A.0
B.1
C.
D.
6.若数列{an}满足N*),则称{an}为“等方比数列”
甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于
A.-1
B.1
C.
D.
8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是
A.2
B.3
C.4
D.5
9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是
A.
B.
C.
D.
10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有
A.60条
B.66条
C.72条
D.78条
二、填空题:本大题共5小题,每小题5分,共25分。
11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。
12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)
13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。
14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)
15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。
三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分12分)
已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。
17.(本小题满分12分)
分 组
频 数
4
25
30
29
10
2
合 计
100
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)
共有100个数据,将数据分组如右表:
(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出
频率分布直方图;
(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概
率是多少;
(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。
18.(本小题满分12分)
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。
19.(本小题满分12分)
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)
20.(本小题满分13分)
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x) ≥g(x) (x>0)。
21.(本小题满分14分)
已知m,n为正整数。
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
参考答案
一、选择题:本题考查基础知识和基本运算。每小题5分,满分50分。
1.B2.A3.B4.D5.C6.B7.A8.D9.C10.A
二、填空题:本题考查基础知识和基本运算。每小题5分,满分25分。
11.6;
12.(2,1)(或满足a=2b的任一组非零实数对(a,b))
13.—
14.
15.;0.6
三、解答题:本大题共6小题,共75分。
16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。
解:
(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,
则由.
(Ⅱ)
=
=
=.
.
即当.
17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力
分 组
频 数
频 率
4
0.04
25
0.25
30
0.30
29
0.29
10
0.10
2
0.02
合 计
100
1.00
(Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+×0.30=0.44.
(Ⅲ)总体数据的期望约为
1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.
18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.
解法1:
(Ⅰ)是等腰三角形,又D是AB的中点,
又
(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面VAB.连接BH,于是∠CBH就是直线BC与平面VAB所成的角
在Rt△CHD中,设,
即直线BC与平面VAB所成角的取值范围为(0,).
解法2:
(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(),
从而
同理
=-
即
又
(Ⅱ)设直线BC与平面VAB所成的角为φ,平面VAB的一个法向量为n=(x,y,z),
则由n·
19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
解法1:
(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2.
于是
=
=
.
(Ⅱ)设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则
=.
=
=
=
令,得为定值,故满足条件的直线l存在,其方程为,
即抛物线的通径所在的直线.
解法2:
(Ⅰ)前同解法1,再由弦长公式得
=
又由点到直线的距离公式得.
从而,
(Ⅱ)设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为
将直线方程y=a代入得
设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有
令为定值,故满足条件的直线l存在,其方程为.
即抛物线的通径所在的直线。
20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力
解:
(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,
.
即
即有
令于是
当
当
故为减函数,
于是h(t)在
(Ⅱ)设
则
故F(x)在(0,a)为减函数,在(a,+)为增函数,
于是函数
故当x>0时,有
21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.
解法1:
(Ⅰ)证:用数学归纳法证明:
(i)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,
所以左边≥右边,原不等式成立;
(ii)设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,
两边同乘以1+x得
所以时,不等式也成立。
综合(i)(ii)知,对一切正整数m,不等式都成立.
(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得
于是
(Ⅲ)解:由(Ⅱ)知,当n≥6时,
故只需要讨论n=1,2,3,4,5的情形;
当n=1时,3≠4,等式不成立;
当n=2时,32+42=52,等式成立;
当n=3时,33+43+53=63,等式成立;
当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;
当n=5时,同n=4的情形可分析出,等式不成立.
综上,所求的n只有n=2,3
解法2:
(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:
当x>-1,且x≠0时,m≥2,(1+x)m>1+mx. 1
(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;
(ii)设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.
于是在不等式(1+x)k>1+kx两边同乘以1+x得
(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,
所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立
综上所述,所证不等式成立
(Ⅱ)证:当
而由(Ⅰ),
(Ⅲ)解:设存在正整数成立,
即有()+=1②
又由(Ⅱ)可得
()+
+与②式矛盾,
故当n≥6时,不存在满足该等式的正整数n。
故只需要讨论n=1,2,3,4,5的情形;
当n=1时,3≠4,等式不成立;
当n=2时,32+42=52,等式成立;
当n=3时,33+43+53=63,等式成立;
当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;
当n=5时,同n=4的情形可分析出,等式不成立
综上,所求的n只有n=2,3
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
本试卷共4页,满分150分,考试时间120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的
1.如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3
B.5
C.6
D.10
2.将的图象按向量a=平移,则平移后所得图象的解析式为
A.
B.
C.
D.
3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n
②m⊥n m'⊥n'
③m'与n'相交m与n相交或重合
④m'与n'平行m与n平行或重合
其中不正确的命题个数是
A.1
B.2
C.3
D.4
5.已知p和q是两个不相等的正整数,且q≥2,则
A.0
B.1
C.
D.
6.若数列{an}满足N*),则称{an}为“等方比数列”
甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于
A.-1
B.1
C.
D.
8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是
A.2
B.3
C.4
D.5
9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是
A.
B.
C.
D.
10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有
A.60条
B.66条
C.72条
D.78条
二、填空题:本大题共5小题,每小题5分,共25分。
11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。
12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)
13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。
14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)
15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。
三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分12分)
已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。
17.(本小题满分12分)
分 组
频 数
4
25
30
29
10
2
合 计
100
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)
共有100个数据,将数据分组如右表:
(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出
频率分布直方图;
(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概
率是多少;
(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。
18.(本小题满分12分)
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。
19.(本小题满分12分)
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)
20.(本小题满分13分)
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x) ≥g(x) (x>0)。
21.(本小题满分14分)
已知m,n为正整数。
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。
字数太多,复制不上去,想要的话,我给你发
湖北省今年高考数学难吗
大学高考 12月15日,由省教育考试院编写的《普通高等学校招生全国统一考试(湖北卷)考试说明》(简称“高考大纲”)新鲜出炉。
高考大纲中,数学试题总体难度适中。与的高考大纲相比,的考试范围与要求层次有一些微调:函数的概念与表示,由“掌握”变为“理解”;一元二次不等式与相应的二次函数、二次方程的联系,由“掌握”变为“理解”;考点增加了“定积分的简单应用”,要求为“了解”;考点增加了“参数方程与普通方程的互化”,要求为“理解”。
备考建议
考生应重视数学基础知识(基本概念、公式、定理)、基本技能和基本数学思想方法的掌握与运用。以课本例题、习题和习题重组为载体,抓好基础题型和常规方法的训练落实。老师要对例题和习题进行整合、重组、演变、推广,使学生能够从不同侧面和多个角度更加深入地把握问题的本质。
考生应该做到以下几点:1、课堂勤做笔记;2、先“思考”后“答题”;3、要把平时的作业训练当成考试认真对待;4、规范答题;5、对错题勤反思。
湖北高考数学的压轴题的某个步奏
2023湖北高考数学试题总体来说有一定的难度。
原本轻松考个90多分的人,最后只考了7、80,处于中上游水平的同学,成绩也几乎要跌破及格线,在这样的试卷折磨下,能考满分绝对可以被称为“神仙”。
资料拓展:
数学[英语:mathematics,源自古希腊语μ?θημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不碧悔是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索敬慧悉不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作亮乎为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
湖北2023年高考数学难吗
M>=|f'(1)|
M>=|f'(b)|
相加得:2M>=|f'(1)|+|f'(b)|
就解法一中的(2) ①
因为f'(1)=-1+2b+c
f'(b)=b^2+c
由|x1|+|x2|>=|x1-x2|得:
|f'(1)|+|f'(b)|>=|f'(1)-f'(b)|=|-1+2b+c-b^2-c|=(b-1)^2>=1 (因为b的范围是[-1,0]所以当b=0时取最小值1)
所以M>=1/2 (b-1)^2>=1/2
f'(b)是最大的 但|f'(b)|不是最大的~~
题中要求的是g(x)=|f'(x)|的最大值~~
湖北2023年高考数学比较难。
1、2023湖北高考数学试题难度。
2023湖北高考数学试题总体来说有一定的难度,湖北高考数学试题突出对理性思维和关键能力的考查。今年高考数学难度相比于以往难度有所上升,强调考查逻辑推理与独立思考、注重知识的运用。
2、2023湖北高考时间。
2023湖北高考时间是6月7日到6月9日,其中语文科目考试时长为150分钟,数学、外语科目考试时长均为120分钟;高中学业水平选择性考试各科目考试时长均为75分钟。
3、2023湖北高考模式。
2023湖北高考是3+1+2模式,不分文理科,其中语文、数学、外语3门课为统考科目,然后从物理、历史中选择1门为首选科目,在思想政治、地理、化学、生物学中选择2门为再选科目。
高考前的准备工作:
1、制定复习。
提前规划每天的复习内容和时间分配,合理安排各科目的重点复习,并考虑到自己的学习习惯和时间安排。
2、系统复习与归纳。
逐个科目进行系统的知识复习,理清各章节和单元之间的关系,利用学科辅导资料整理归纳出重点知识点和易错点。
3、做模拟考试。
参加学校组织的模拟考试,模拟真实考试环境和时间限制,及时发现并解决自己的考试经验不足、时间分配不当等问题。
4、针对性备考。
针对自己弱势科目和薄弱知识点,加强针对性的巩固复习,用多种学习方式和方法(如笔记、记忆卡片、口诀等)提高记忆和理解能力。
5、做历年真题。
研究历年真题的命题特点、考点频率和解题思路,培养对题型的熟悉感,锻炼解决复杂问题的能力。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。