数学高考题目数量,数学高考大题目
1.历史上有哪些难度较高的高考数学题目
2.今年高考数学问题
3.高考数学最后一题,到底有多难?
4.2022年全国新高考1卷数学试题及答案解析
5.高考数学比较大小的技巧
6.2021新高考数学大题必考题型有哪些
高考 数学 压轴大题难度大、综合性强,取得满分不容易,但是想尽可能得分还是有方法可行的。下面我整理了一些数学压轴题答题技巧,供大家参考!
高考数学压轴题怎么答
1、如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。
2、解题过程中卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答.
3、对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
4、“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
高考数学最后一题怎么做
最牛高考励志书,淘宝搜索《高考蝶变》购买!
正确认识压轴题
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
千万不要分心
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
历史上有哪些难度较高的高考数学题目
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
今年高考数学问题
恢复高考的44年来,一共有3次高考数学特别难,被称为数学难度巅峰。
(一)年高考数学
年的高考数学被很多人认为是历史上最难的一次数学高考,每道题看起来都像是奥数题。很多高材生出了考场后面如死灰,内心十分绝望。
据几位当年参加过高考的人回忆,其中一位考生,那年高考他数学考了13分,但还是上了一所985大学。另一位同学高考理科数学考了41分,但这个成绩已经不低了,他印象中大题没有一个做完整的。最后,这位同学总分考了453分,还高出本科线13分。
(二)1999年高考数学
1999年的全国数学卷平均分只有60分。该年高考主打创新思维,并且把数学与生活紧密联系,并且了传统出题的局限性,如果思维不够活跃的话,很难得到高分。
这一年,教育部颁发了《关于进一步深化普通高等学校招生考试改革的意见》,明确指出“高考内容的改革是高考改革的重点”,要求“更加注重对考生能力和素质的考查”,“在试题设计上增加应用型和能力性的题目”。
在这样的时代和政策背景下,1999年是一个关键的年份,正面临着新旧教材的更替之年,需要体现新高考对数学教学的要求,也对人才的选拔提出新的标准。所以这一年的“难”,更多的体现在对数学考试的创新上,要求学生进一步打破死记硬背的学习方式,综合培养自己各方面的数学能力。
(三)2003年高考数学
2003年爆发了著名的“非典”,事实上,原本每年高考都在7月份举行,由于各地天气炎热,导致很多学生发挥失常甚至中暑。为了避免这种情况,在非典爆发之前,教育部就已经下发政策,将高考时间提前到6月份考试。突如其来的非典导致了绝大多数学生复习期间中途断课,但是出于政策的平稳考虑,高考依然在6月份举行。
在这样的背景下,613万考生在那年迎来了后来被称为"史上最难高考年与最大惨案"事件。难,一方面是体现在时间上,非典疫情导致许多学校在4月停课并且高考比起往年还提前了一个月。
另一方面就体现在了试卷难度上,那年的各科高考试卷难度比起往年都有所增加,而数学更是让无数考生以泪洗面,据说那年数学的平均分仅仅只有60多分,也因此被无数考生称为高考数学"最大惨案",其中江苏卷更是被作为话题讨论到了今日。
高考数学最后一题,到底有多难?
高中数学重点知识与结论分类解析
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.
8.充要条件
二、函 数
1.指数式、对数式, , ,
,
, , , , , , .
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.
推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.
推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
(3)函数 与函数 的图像关于坐标原点中心对称.
推广:曲线 关于直线 的对称曲线是 ;
曲线 关于直线 的对称曲线是 .
(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .
如果 是R上的周期函数,且一个周期为 ,那么 .
特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .
三、数 列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意: ; .
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) ; .
(3) 、 也成等差数列.
(4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5) 仍成等差数列.
(6) , , , , .
(7) ; ; .
(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2) ; .
(3) 、 、 成等比数列; 成等比数列 成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(5) 成等比数列.
(6) .
特别: .
(7) .
(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
③ , , , .
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① ,
② ,
特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.
(6)通项转换法。
四、三角函数
1. 终边与 终边相同( 的终边在 终边所在射线上) .
终边与 终边共线( 的终边在 终边所在直线上) .
终边与 终边关于 轴对称 .
终边与 终边关于 轴对称 .
终边与 终边关于原点对称 .
一般地: 终边与 终边关于角 的终边对称 .
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意: ,
, .
4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
如 , , , , 等.
常值变换主要指“1”的变换:
等.
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).
辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.
(4)面积公式: .
五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).
3.两非零向量平行(共线)的充要条件
.
两个非零向量垂直的充要条件
.
特别:零向量和任何向量共线. 是向量平行的充分不必要条件!
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.
5.三点 共线 共线;
向量 中三终点 共线 存在实数 使得: 且 .
6.向量的数量积: , ,
,
.
注意: 为锐角 且 不同向;
为直角 且 ;
为钝角 且 不反向;
是 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).
7.
注意: 同向或有 ;
反向或有 ;
不共线 .(这些和实数集中类似)
8.中点坐标公式 , 为 的中点.
中, 过 边中点; ;
. 为 的重心;
特别 为 的重心.
为 的垂心;
所在直线过 的内心(是 的角平分线所在直线);
的内心.
.
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用)
a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
同号或有 ;
异号或有 .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).
6.不等式的恒成立,能成立,恰成立等问题
(1).恒成立问题
若不等式 在区间 上恒成立,则等价于在区间 上
若不等式 在区间 上恒成立,则等价于在区间 上
(2).能成立问题
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .
(3).恰成立问题
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .
注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)
与直线 平行的直线可表示为 ;
与直线 垂直的直线可表示为 ;
过点 与直线 平行的直线可表示为:
;
过点 与直线 垂直的直线可表示为:
.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .
注:点到直线的距离公式
.
特别: ;
;
.
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程 ;标准方程 ;
一般式方程 ;
参数方程 为参数);
直径式方程 .
注意:
(1)在圆的一般式方程中,圆心坐标和半径分别是 .
(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:
, ,
,
.
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: .
如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.
如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).
7.曲线 与 的交点坐标 方程组 的解;
过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:
2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
注意:等轴双曲线的意义和性质.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
( , , )或“小小直角三角形”.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
特别声明:
①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.
②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.
③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;
如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.
如正四面体和正方体中:
5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.
9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导 数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .
2.多项式函数的导数与函数的单调性:
在一个区间上 (个别点取等号) 在此区间上为增函数.
在一个区间上 (个别点取等号) 在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数 在 处有 且“左正右负” 在 处取极大值;
函数 在 处有 且“左负右正” 在 处取极小值.
注意:①在 处有 是函数 在 处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;
函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.
4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.
5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.
十一、概率、统计、算法(略) 赞同
2022年全国新高考1卷数学试题及答案解析
高考数学的最后一道大题,对于很多高三学生来说就是一个噩梦,因为它涉及的知识面比较广,对学生扩展性思维能力要求非常高。而且还需要你将前后知识充分的人会贯通,思维跳跃能力要比较好,对整个题目要纵观全局,一步紧接这一步,环环相扣,还不一定能将它解出来。
我在高考前复习的那段时间,还没有完全放弃最后一道大题,有时候做完一套数学模拟题,我也会试着去钻研一下最后一个大题。在往往是想破脑袋也只能做出来前两问,后面两问看答案就有三四页,能把那些步骤看懂就已经很不错了。
有一次我拿着最后一道大题去问老师,老师拿着那道题研究了一个多小时才做出来,给我讲了半天我也没听懂。老师就会很无奈的说,你自己拿着看一下吧!能看懂多少是多少,这个题对你们来说有点难。
后来复习的那段时间,我几乎都放弃最后一道大题了!即使做也就是象征性的做一下第一问,其他的就不管了。因为做起来太浪费时间了,还不一定能够得分,高考最重要的还是要拿到分数。
最后一道大题考的综合知识能力比较强。如果想把它全部答对,是非常不容易的。高考时间非常紧迫,我们根本没有时间去做。但是我们可以冲着题目的意思,先把自己知道的值算出来。阅卷老师会给我们酌情给分,也不至于全军覆没。
高考数学比较大小的技巧
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想 方法 和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与 其它 学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关 文章 :
★ 2022高考甲卷数学真题试卷及答案
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022高考全国甲卷数学试题及答案
★ 2022高考数学大题题型总结
★ 2022全国乙卷理科数学真题及答案解析
★ 2022年全国乙卷高考数学(理科)试卷
★ 2022年新高考1卷语文真题及答案解析
★ 全国新高考一卷2022语文试题及答案一览
★ 2022江西高考文科数学试题及答案
★ 2022全国新高考II卷语文试题及答案解析
2021新高考数学大题必考题型有哪些
一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。一着不慎,满盘皆输。)。二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。更多相关知识也可关注下北京新东方的高中数学课程。
从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。
2021年“新高考”数学试卷结构
第一大题,单项选择题,共8小题,每小题5分,共40分;
第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;
第三大题,填空题,共4小题,每小题5分,共20分;
第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。
怎么学好数学数学是个费时费力的学科,无论文理,但凡数学好的同学很稳定的同学,他的数学相关时间基本符合一天时间的40-50%,所以如果数学想要冲击140,那么至少要保证40%的时间要花在数学上,如果你其他部分是很偏科的,那么就没有时间花在数学上,就不要做数学140的梦了
对于那些压轴题12、16、20、21来讲,首先不能怂,就全国卷目前 命题趋势来看,16题偏于简单,12题难度在增大,所以在有时间的情况下,可以先适度钻研16题,12题没时间没思路可以懵,毕竟是选择题,还是有概率蒙对的。
20题圆锥曲线类型考的不是难度,而是你是否认真。其实圆锥曲线并不难,该理解的关键点和题型搞清楚了它其实并没有太大的变化,所以这个地方题目去刷真题即可。(所有的好题都值得做三遍,什么是好题,你既然110以上了,应该有这个基本判断。)第一遍做正常做,做完对答案;第二遍隔天或者隔两天做效果最好,重新快速把昨天的好的题目过一遍,要针对关键步骤进行梳理,第二遍的想法和第一遍的想法有什么区别,差距在哪里,可以丰富思路,改变思考习惯,对于压力很大的考场有很大帮助。第三遍最好是7天以后,时隔7天,豁然开朗,不信你试试。好的学生在这一点上做的很好,拿到题目的时候他们并不是短时间内想出来这个题目怎么解,而是想起来类似很明朗的思路,按照这个思路去做题,然后一步步套进去,演算,就得出结果了。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。