1.求近几年数学高考试卷(带答案,最好是湖北省的)

2.2023年高考数学试卷难吗

3.天津哪年高考数学备用卷

4.高考数学题 求第13,15,17,18题答案和解题方法!

17年高考数学试卷全国卷一,17年高考数学试卷答案

高三数学试卷分析1

 一、试卷特点分析

 1.覆盖知识面广,重点考查主干

 除了概率与统计以外,试题全面覆盖教材中知识模块,知识条目的覆盖率在50%左右。除主干知识重点考查外,已广泛涉及复数、集合、三视图,程序框图、逻辑与推理、排列组合、线性规划、平面向量等。还注重了数学的现实情境和历史文化,如理科第7、9、14、18题,文科第5、19题。

 试卷穾出学科的主干内容:函数与导数、三角、数列、立体几何、解析几何以及不等式在试卷中占有较高的比例,整体结构合理,达到必要的考查深度。

 试卷还注意知识交汇的考查,如理科第5、14题 ,文科第7、11、19题。

 2.注重思想方法,突显能力素养

 七个基本数学思想在试卷中都有涉及。解题方法有坐标法、三角法、向量法、待定系数法、代入法、消元法、配方法、换元法等。

 六大数学核心素养:运算求解能力在绝大多数题目中都有体现,逻辑推理也有鲜明体现,直观想象体现在用数形结合的题目中,数学建模与数据分析是对现实问题进行抽象,用数学语言表达和解决问题的过程。同时也自然考查了阅读理解和知识迁移能力,也关注到数学的应用。

 3.贴近教材提高,增大思维难度

 试卷的知识构成、题型构成严格按照考纲命制,有近80%的题目体现教材的基础知识、基本技能与基本方法。选填题多数题目直接来自教材的基本概念、基本方法、基本运算或只做简单的变形,起点不高,坡度不陡,大多只涉及两三个知识条目,仅进行两三步演算,切合多数学生实际,虽然后两三题加大了思维量和运算量,但还属中档偏难一点。选择题思维量较大的理科第10、11、12题,文科第8、11、12题。填空题思维量较大的理科第15、16题,文科第15、16题。解答题思维量与运算量较大的理科第18(2)、20、21题,文科第19(2)、20、21题。

 4.体现目标层次,文理差异互补

 每类题型易中难搭配,从易到难。

 文理科试卷除了四个小题(文、理第3题,文10理6,文理第13题,文14理4)及二选一的第22题完全相同外,其他题目都不相同。实现差异主要是撤换文科不考内容(如排列组合),降低题目难度(姐妹题)及调换前后位置三种形式。对理科少考的指数函数问题,文科多考一点。

 5.重视数学文化,呈现创新元素

 新考纲突出了增加数学文化内容,理科试卷在考查数学文化方面做了一些努力和尝试。通过对材料的创新设计使考生深刻地认识到中华民族优秀传统文化中注重算法的特点,为试卷注入了新的活力。

 试题中出现中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。德国数学家C.F.高斯是在1801年才建立起同余理论的,大衍求一术反映了中国古代数学的高度成就。在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:

 “三人同行七十稀,五树梅花廿一枝,

 七子团圆正半月,除百零五便得知。”

 这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。"孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。列成算式就是:

 N=70×2+21×3+15×2-2×105。

 这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式

 N=70×R1+21×R2+15×R3-P×105(p是整数)。

 试卷通过设置综合性、开放性、探索性试题,具有情境创新、情境多样、思维灵活的特点,既考查了学生的基本知识、基本技能,又考查了学生基本思想、基本体验活动,穾出考查学生的创新能力。

 二、对下一阶段精准备考,高效复习的建议

 第一:进一步夯实基础

 做到百分之百的掌握,一清二楚的理解,准确无误的应用,融汇贯通的领悟。

 第二:更重视通性通法

 回归朴素本原,淡化特殊技巧,掌握应用概念、性质、定理等解决问题的基本方法、基本技能,也就是应用数学思想分析问题、理解问题、把握问题、探寻解题方法的基本思维方法。

 第三:最重要的是形成数学核心素养

 以基本能力加综合能力的培养为导向,统领三基的落实,在知识深化理解、应用中提升能力,形成素荞。

 第四:再强调回归教材

 对教材的例习题、相关结论要熟悉,有的结论虽不能作为定理公式应用,但可以启发思路,简化思维过程。

 第五:特穾出自牫解决问题的"独立性"

 面对试题需要考生自我分析问题、自我判断、自我选择方法、遇到困难自我突围。这就要求学生具有独立思考的能力、选择简捷解题方法的辨别能力、逻辑严谨的表达能力,判断结论答案合理正确的判断能力,而这些能力需在平时的解题过程中学习、训练,在教师引导下的自我反思感悟,有了自已的认识与体验,从而真正做到精准备考、高效复习。

高三数学试卷分析2

 选择题

 本次西城区二模考试的选择题排布如下:1、集合,2、向量,3、函数值域,4、抛物线,5、不等式与逻辑用语,6、线性规划,7、三视图,8、函数参数的取值范围。其中第5题很多学生以前应该做过。这些题目基本上就是以前高频问题进行的简单改编。第8题,需要学生对于特殊函数、不等式、及范围问题的解题技巧能够综合掌握。当然,对学生而言,必须要首先把基本题目做好,如果里面出现问题,比如第4题不熟悉抛物线的焦准距与参数的关系,第7题三视图还原还有问题等,则需加以重点强化。

 填空题

 填空题考察的内容排布如下:9、复数,10、程序框图,11、解三角形,12、直线和圆,13、分段函数,14、计数原理。

 第9题考查了“共轭”的概念,帮助学生们进一步检查知识掌握的完整性。第12题,涉及到“对称”的概念,学生们需要抓住“对称”这个条件对应的代数转化。13题分段函数,一定要熟练掌握数形结合的分析方法,注意填空题有可能会有多解。14题是一个篇幅比较大的题目,一方面,考察学生的阅读和关键数据提炼能力,另外,需要学生的逻辑思维比较清晰,必要时也可画图辅助分析。此外,学生能够有良好的心理素质、足够的信心去处理题目也是必要的。实际上题目并不难。

 解答题

 大题方面,15题考查的是一个正切函数,在三角这个模块的高考考察中出现频次要低一些,学生需注意“锐角”条件及规范的解答过程。16题的统计概率,题材为“餐厅满意度调查”,里面有直方图和频数分布表,该图是学生平时训练比较多的模式,理解难度比一模要简单一些,问法也较一模简单,多数学生可以做好。17题的`混合数列求和是最简单的模式,一个等差数列加上一个等比数列,构成一个新的数列,只需要注意审题,第二问的情况里面,第一问里的条件不成立。18题立体几何,包括垂直、平行的证明,以及一个是否存在类的问题,非常经典的构造,考生需注意解答过程中书写规范,以及加快分析速度节约解题时间。

 最后说一下经常做压轴大题的导数与圆锥。今年西城二模导数为19题,圆锥作为最后一题。从考法上来说,19题的导数模型比较复杂,有分式、有对数,第二小问的证明“极小值大于极大值”,与以往相比具有一定新颖性,而证明题对学生也具有相当的挑战,很多学生从思路到过程平时练得都比较少。二模之后,对于基本知识掌握到一定程度的学生而言,需要着重强化证明题。

 第20题,三个小问分别是标准方程、面积最值,线段大小关系判断。本题是经典圆锥曲线构造,分析难度一般低于导数最为最后一题的情形,但对考生数学量的表达能力与计算能力的要求会比较高。在最后的阶段,学生们需要再次巩固计算能力,保持手感,以应对高考中可能出现的计算量大的问题。

 总体而言,本次西城二模出题比较“稳重”,很好地检验了学生的基本功及应对较热门考察套路的能力。对于水平较高的学生,做好选填大题的压轴题目,能够起到一定的训练效果,同时,注意后期加强证明题的练习,加强答题过程细节的练习,及时总结失分原因并提炼“考前写给自己的最后总结”,注意合理安排时间,寻找对提分“增量”最大的点,加以强化,注意解题时间分配的监测以思考遇到难题时的应对策略。希望考生们,能在最后一个月的高考冲刺中,抓住最后可以强化的点,再做出一些突破,并调整好状态,在高考中考出理想成绩。

求近几年数学高考试卷(带答案,最好是湖北省的)

一、2022年辽宁高考数学试卷试题难不难

2022年辽宁高考数学试卷难度或加大,2022高考难度趋势曝光数学篇中国考试公布的2022年的高考命题导向给考生们的备考指明了方向。总体的目标,一是关注科技发展与进步,二是关注社会与经济发展,三是关注优秀传统文化。题型特点,一是举例问题灵活开放,考察考生想象能力,有多组正确答案,有多种解题方案可供选择,二是结构不良问题适度开放,考查考生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中重视培养数学核心素养,三是存在问题有序开放,考察考生的逻辑推理能力和运算求解题能力,再体现开放性的同时,也考查了考生思维的准确性与有序性。

二、辽宁高考数学答题注意事项和指南

一、答题和时间的关系

整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。

高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。

二、快与准的关系

在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

三、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a>0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

四、“会做”与“得分”的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。

五、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的`题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

2023年高考数学试卷难吗

 2010年普通高等学校招生全国统一考试(湖北卷)

 数学(理工类)

本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。

 ★祝考试顺利★

注意事项:

 1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。

 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

 3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。

 4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 为虚数单位,则=

 A.- B.-1 C. D.1

2.已知,则=

 A. B. C. D.

3.已知函数,若,则x的取值范围为

 A. B.

 C. D.

4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则

 A. n=0 B. n=1 C. n=2 D. n 3

 试卷类型:A

 5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=

 A.0.6 B.0.4 C.0.3 D.0.2

 6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=

 A.2 B. C. D.

 7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为

 

 A.0.960 B.0.864 C.0.720 D.0.576

 8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为

 A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]

 9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的

 A.必要而不充分的条件 B.充分而不必要的条件

 C.充要条件 D.即不充分也不必要的条件

 10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=

 A.5太贝克 B.75In2太贝克

 C.150In2太贝克 D.150太贝克

 二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。

 11. 的展开式中含的项的系数为

 12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)

 13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

试卷类型A

14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。

(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;

(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。

15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:

由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.

16.(本小题满分10分)

设的内角所对的边分别为,已知

(Ⅰ)求的周长

(Ⅱ)求的值

17. (本小题满分12分)

提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.

(Ⅰ)当时,求函数的表达式;

(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)

18. (本小题满分12分)

如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.

(Ⅰ)当=1时,求证:⊥;

(Ⅱ)设二面角的大小为,求的最小值.

19.(本小题满分13分)

已知数列的前项和为,且满足:, N*,.

(Ⅰ)求数列的通项公式;

(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.

20. (本小题满分14分)

平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.

(Ⅰ)求曲线的方程,并讨论的形状与值得关系;

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。

21.(本小题满分14分)

(Ⅰ)已知函数,,求函数的最大值;

(Ⅱ)设…,均为正数,证明:

(1)若……,则…;

(2)若…=1,则……。

天津哪年高考数学备用卷

2023年高考数学试卷很难。

2023年高考数学全面贯彻党的教育方针,促进学生德智体美劳全面发展;反映新时代基础教育课程理念,落实考试评价改革、高中育人方式改革等相关要求,全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析的核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学科在人才选拔中的重要作用。

2023高考数学的作用:

2023年高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质、展现思维过程,给考生搭就了展示的舞台、发挥的空间,致力于服务人才自主培养质量提升和现代化建设人才选拔。

1、重点考查逻辑推理素养,如新课标Ⅰ卷第7题以等差数列为材料考查充要条件的推证,要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。

新课标Ⅱ卷第11题,其本质是根据一元二次方程根的性质判定方程系数之间的关系,题中函数经过求导以后,其既有极大值又有极小值的性质可以转化为一元二次方程有两个正根。全国乙卷理科第21题要求考生根据参数的性质进行分类推理讨论,考查了思维的条理性、严谨性。

2、深入考查直观想象素养,如全国甲卷理科第15题要求通过想象与简单计算确定球面与正方体棱的公共点的个数。全国乙卷理科第19题以几何体为依托,考查空间线面关系。新课标Ⅱ卷第9题以多选题的形式考查圆锥的内容,题目全面考查基础,四个选项设问逐次递进,前面的选项为后面的选项提供了条件,各选项分别考查圆锥的不同性质,互相联系,重点突出。

3、扎实考查数学运算素养,要求考生理解运算对象,掌握运算法则,探究运算思路,求得运算结果。如新课标Ⅰ卷第17题以正弦定理、同角三角函数基本关系式、解三角形等数学内容,考查数学运算素养。新课标Ⅱ卷第10题设置了直线与抛物线相交的情境,通过直线方程与抛物线方程的联立考查计算能力

高考数学题 求第13,15,17,18题答案和解题方法!

天津17年高考用了数学备用卷,高考考试的前一天工作人员正对存放考试试卷的房间进行常规的检查,然而却发现一个存放考卷的柜子,被当场撬开,他立刻报警,考卷被盗,这个消息,迅速传到了省委省政府,以及教育部、公安部等多个职能部门的手中,警方火速组织人员展开调查。

13、sinx>cosx

===> sinx-cosx>0

===> √2sin[x-(π/4)]>0

所以,x-(π/4)∈(2kπ,2kπ+π)

所以,x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)

15、

f(x)=cos^2 x+sinx=(1-sin^2 x)+sinx

=-sin^2 x+sinx+1

令sinx=t

所以,f(t)=-t^2+t+1=-[t^2-t+(1/4)]+(5/4)=-[t-(1/2)]^2+(5/4)

已知|x|≤π/4,所以t=sinx∈[-√2/2,√2/2]

那么,当t=-√2/2时有最小值=-[-√2/2-1/2]^2+(5/4)=(2-2√2)/4=(1-√2)/2

17、f(x)=sin(2x/3)+cos[(2x/3)-(π/6)]

=sin(2x/3)+[cos(2x/3)cos(π/6)+sin(2x/3)sin(π/6)]

=sin(2x/3)+(√3/2)cos(2x/3)+(1/2)sin(2x/3)

=(3/2)(sin2x/3)+(√3/2)cos)(2x/3)

=√3*sin[(2x/3)+(π/3)]

所以,f(x)的周期为T=2π/(2/3)=3π

则,两条相邻对称轴之间的距离=T/2=3π/2

18、

由正弦定理知,S△ABC=(1/2)AB*BC*cosB=(1/2)AB*1*(√3/2)=√3

所以,AB=4

由余弦定理有:AC^2=AB^2+BC^2-2AB*BC*cosB

=16+1-2*4*1*(1/2)

=13

所以,AC=√13

再,AC/sinB=AB/sinC

===> (√13)/(√3/2)=4/sinC

===> sinC=2√39/13

所以,cosC=-√13/13

则,tanC=sinC/cosC=-2√3