1.2023山东高考数学难吗

2.2023山东高考数学题难吗

3.2011年高考山东卷理科数学12题解答过程。谢谢!

4.2023年山东省高考数学难度

5.山东高考数学是全国卷吗

6.2023山东高考数学用的是什么卷

高考数学山东卷试卷_高考数学山东卷答案

绝密★启用前 试卷类型:B

2010年普通高等学校招生全国统一考试(山东卷)

理科数学解析版

注意事项:

1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证

号条形码粘贴在答题卡上的指定位置,用2B铅笔将答题卡上试卷类型B后的方框涂黑。

2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷、草稿纸上无效。

3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区

域内。答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)

一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只

有一项是满足题目要求的.

(1) 已知全集U=R,集合M={x||x-1| 2},则

(A){x|-1x3} (B){x|-1 x 3} (C){x|x-1或x3} (D){x|x -1或x 3}

答案C

解析因为集合 ,全集 ,所以

命题意图本题考查集合的补集运算,属容易题.

(2) 已知 (a,b∈R),其中i为虚数单位,则a+b=

(A)-1 (B)1 (C)2 (D)3

答案B

解析由 得 ,所以由复数相等的意义知 ,所以 1,故选B.

命题意图本题考查复数相等的意义、复数的基本运算,属保分题。

(3)在空间,下列命题正确的是

(A)平行直线的平行投影重合

(B)平行于同一直线的两个平面平行

(C)垂直于同一平面的两个平面平行

(D)垂直于同一平面的两条直线平行

答案D

解析由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。

命题意图考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。

(4)设f(x)为定义在R上的奇函数,当x≥0时,f(x)= +2x+b(b为常数),则f(-1)=

(A) 3 (B) 1 (C)-1 (D)-3

答案D

(7)由曲线y= ,y= 围成的封闭图形面积为[来源:www.ks5u.com]

(A) (B) (C) (D)

答案A

解析由题意得:所求封闭图形的面积为 ,故选A。

命题意图本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。

(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有

(A)36种 (B)42种 (C)48种 (D)54种

答案B

可知当直线 平移到点(5,3)时,目标函数 取得最大值3;当直线 平移到点(3,5)时,目标函数 取得最小值-11,故选A。

命题意图本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数 的几何意义是解答好本题的关键。

(11)函数y=2x - 的图像大致是

答案A

解析因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。

命题意图本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力。

(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令

,下面说法错误的是( )

A.若 与 共线,则 B.

C.对任意的 ,有 D.

答案B

解析若 与 共线,则有 ,故A正确;因为 ,而

,所以有 ,故选项B错误,故选B。

命题意图本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。

二、填空题:本大题共4小题,每小题4分,共16分.

(13)执行右图所示的程序框图,若输入 ,则输出 的值为 .

答案

解析当x=10时,y= ,此时|y-x|=6;

当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;

当x= 时,y= ,此时|y-x|= ,故输出y的值为 。

命题意图本题考查程序框图的基础知识,考查了同学们的试图能力。

答案

解析由题意,设所求的直线方程为 ,设圆心坐标为 ,则由题意知:

,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。

命题意图本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。

(18)(本小题满分12分)

已知等差数列 满足: , , 的前n项和为 .

(Ⅰ)求 及 ;

(Ⅱ)令bn= (n N*),求数列 的前n项和 .

解析(Ⅰ)设等差数列 的公差为d,因为 , ,所以有

,解得 ,

所以 ; = = 。

(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,

所以 = = ,

即数列 的前n项和 = 。

命题意图本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。

(19)(本小题满分12分)

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;

(Ⅱ)求直线PB与平面PCD所成角的大小;

(Ⅲ)求四棱锥P—ACDE的体积.

解析(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,

所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,

又PA ,所以 ,又AB‖CD,所以 ,又因为

,所以平面PCD⊥平面PAC;

(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则

,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;

(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。

= ,

所以 的分布列为

2

3

4

数学期望 = + +4 = 。

命题意图本题考查了相互独立事件同时发生的概率、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用所学知识解决实际问题的能力。

(21)(本小题满分12分)

如图,已知椭圆 的离心率为 ,以该椭圆上的点和椭圆的左、右焦点 为顶点的三角形的周长为 .一等轴双曲线的顶点是该椭圆的焦点,设 为该双曲线上异于顶点的任一点,直线 和 与椭圆的交点分别为 和 .

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线 、 的斜率分别为 、 ,证明 ;

(Ⅲ)是否存在常数 ,使得 恒成立?若存在,求 的值;若不存在,请说明理由.

解析(Ⅰ)由题意知,椭圆离心率为 ,得 ,又 ,所以可解得 , ,所以 ,所以椭圆的标准方程为 ;所以椭圆的焦点坐标为( ,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为

命题意图本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,

(22)(本小题满分14分)

已知函数 .

(Ⅰ)当 时,讨论 的单调性;

(Ⅱ)设 当 时,若对任意 ,存在 ,使

,求实数 取值范围.

(Ⅱ)当 时, 在(0,1)上是减函数,在(1,2)上是增函数,所以对任意 ,

有 ,又已知存在 ,使 ,所以 , ,

即存在 ,使 ,即 ,即 ,

所以 ,解得 ,即实数 取值范围是 。

命题意图本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。

(1)直接利用函数与导数的关系讨论函数的单调性;(2)利用导数求出 的最小值、利用二次函数知识或分离常数法求出 在闭区间[1,2]上的最大值,然后解不等式求参数。

2023山东高考数学难吗

核心提示:十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?

青岛新东方学校高中数学教研组

十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?

今年的数学试题,难度与去年相差不大。先看选择题,依次考察了集合的基本运算、复数的基本运算、三角函数图像的平移变换、求已知夹角和模长求向量的数量积、含绝对值的不等式解法、含参数的一元二次不等式组与简单的线性规划、立体几何求旋转体的体积、正态分布、直线与圆的位置关系、函数的综合考查;根据我们过去一年在高考班里练过的类型看,几乎全部是常练题型,没有生僻题型,题目难度以中低难度题目为主,最后一个选择属于中难题目。这里知识点的考查相对全面,都是平时练过的题目,没有新题,比较值得一提的是,选择题的第8题考查了理科生单独学的正态分布知识,这是山东自2005年自主命题以来继2010年之后第二次考查正态分布这个知识点,因此也对未参加高考的学生提个醒:只要是考纲要求的内容,不管平时是否常考,都应该不打折扣的学会和记住,学习上不能有投机心理,只要平时基本功做扎实了,加上考场内有稳定沉着的心态,对大部分考生而言,选择题不应该有明显失分。

2023山东高考数学题难吗

山东2023高考数学难度介绍如下:

山东2023高考数学难度大。2023山东高考数学比较难,山东高考使用全国1卷,今年的全国1卷数学题型较难,很多考生都抱怨说今年的数学试题没做过,看不懂题目,让人抓不着头绪。

高考数学试卷难度介绍如下:

不同地区的学生对数学试卷的难度感受也有所不同。全国甲卷的四川考生表示:四川用的全国甲卷真的好难,前面几道选择题勉强能做,后面几乎靠猜。填空题后两个都不会。大题的部分就更是难了,比平时的题目要难多了。从这个学生的经历可以看出,高考试卷中的选择题和填空题对学生的基础知识要求很高。

河南的一位高考学生更是对今年数学考试的难度深有体会,她称今年数学考试真难,选择填空一半以上都不会,大题部分要命!从这个学生的经历可以看出,今年的高考数学试卷难度很大,对考生的综合能力考察很高。

虽然有一部分学生感觉难度巨大,但是也有一些学生认为今年的数学试卷难度并不大。广东的胡春亮认为自己的数学考试可以拿到90分就谢天谢地了,及格都是问题。这表明有些考生因其平时所学的知识点高考题更为贴近,因此感觉难度不大。

重庆的高考学生认为出题挺好的,不算太难。她的观点表明,有些知识点对某些学生来说较易掌握,出题难度相对较低。

面对高考数学的失利,正确的做法是调整好心态,晚上好好睡个觉,面对第2天的考试。好的心态真的能够带来好运,能够帮你提分。考试失利可能会带来打击,但是这并不意味着考生就不能继续努力争取好成绩。正确的做法是集中注意力在后面的考试,用更好的表现来抵消可能的损失。

2011年高考山东卷理科数学12题解答过程。谢谢!

2023山东高考数学试题总体来说有难度。

2023山东高考数学比较难,山东高考使用全国1卷,今年的全国1卷数学题型较难,很多考生都抱怨说今年的数学试题没做过,看不懂题目,让人抓不着头绪。

山东高考数学试卷为了实现对学生素养的考查,高考命题加强对数学思想方法的考查,今年的新高考1卷体现得较为充分。

2023山东高考数学试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。

2023高考备考建议

1、制定计划:在备考之前,学生应该制定一个详细的备考计划,包括每天学习的时间表和学习目标。这将有助于确保学生能够在备考期间保持专注和有计划地进行学习。

2、注重基础知识:高考重视基础知识的掌握,因此学生应该重点关注基础知识的学习和巩固。这将为他们在高考中获得更好的成绩奠定基础。

3、做好模拟考试:学生应该定期参加模拟考试,并且在模拟考试后仔细分析自己的表现,找出弱点并加以改进。

2023年山东省高考数学难度

首先,对于前两项,若A正确,则B也正确,因此可以排除前两项。若C点是中点,则取λ=0.5,

1/λ=2,试问μ等于多少呢,不存在这样的μ,因而C不是中点,同理D不是中点。

再看C,若CD同时在线段AB上,则有λ<1,μ<1,且λ,μ>0,则1/λ+1/μ>2,不满足题目要求,舍去

最后看D,若CD同时在线段AB的延长线上,则有λ>1,或λ<0,对于μ亦如此,在这些情况下恒有1/λ<1,且1/μ<1,所以1/λ+1/μ<2恒成立,故而CD不可能同时在线段AB的延长线上。

综上,选D

山东高考数学是全国卷吗

2023年山东高考数学试卷总体难度适中,与往年相比略有提高。

考题概述

2023年山东高考数学试卷总体难度适中,与往年相比略有提高。试卷涵盖了数学的基础知识和常规应用,难度较为均衡,针对不同层次的考生都有相应难度的题目。

高考数学命题趋势

从近几年高考数学试卷命题趋势来看,试题难度逐年提高,并且注重综合素质和跨学科的应用能力,突出数学在科技创新和社会发展中的重要作用。

数学备考建议

为了顺利通过高考数学,考生需要把握复习重点和难点,注重巩固基础知识,勤做题、讲思路,提高解题能力,同时也要注重实际应用,多了解数学在生活中的应用场景。

数学在现代科技中的应用

数学是现代科技的重要支柱,广泛应用于人工智能、大数据分析、物联网等领域,对经济、社会和国家安全等发挥着不可替代的作用。

数学科研前沿

数学作为一门顶级学科,在各个领域都有着广泛的应用和研究。目前,人工智能、量子计算、拓扑理论等前沿领域正在快速发展,许多科研工作者正在探索新的理论和应用,推动着数学的快速发展。

数学与职业发展

数学在现代科技和经济发展中的重要作用,也为广大数学专业毕业生提供了更多就业机会。除了传统的教育、金融等领域,越来越多的互联网和科技公司开始注重数学人才的招聘,如算法工程师、数据分析师等,因此,掌握扎实的数学知识和解题能力对个人职业发展有着重要的意义。

数学学习的意义

数学是一门深奥而又充满魅力的学科,它不仅有着广泛的应用场景,而且在人类认知世界的过程中扮演了重要角色。通过学习数学,可以提高人们的逻辑思维能力、抽象思考能力和问题求解能力,对于培养创新精神和全面素质也有着积极的促进作用。

总之,2023年山东高考数学试卷难度适中,考生需要针对性地备考,提高解题能力和实际应用能力,同时也应该始终牢记,学习数学不仅是为了高考,更是为了人生的成长和发展。

2023山东高考数学用的是什么卷

山东高考数学不是全国卷。

原因分析:

2023年山东省高考使用的是“新高考I卷”。其试卷的组成科目有由语文、数学外语3门全国统考科目成绩和物理、化学、生物、思想政治、历史、地理的任选3门选择性考试科目成绩构成。满分为750分。

山东高考语文、数学、外语用的是新高考全国卷Ⅰ,其他科目为本省自命题。

考试科目:

普通高中学业水平等级考试科目为物理、化学、生物、思想政治、历史、地理6个科目,山东考生按规定选择3个科目参加考试。

新高考I卷的概念:

全国新高考Ⅰ卷是普通高等学校招生全国统一考试试卷的一种类型。该试卷包含语文、数学、外语三门考试科目试卷,由教育部教育考试院命题。选用全国新高考Ⅰ卷的省份有广东、福建、江苏、湖南、湖北、河北、山东、浙江。

报考条件:

报名条件有遵守中华人民共和国宪法和法律;高级中等教育学校毕业或具有同等学力;身体状况符合相关要求。

高考的意义:

1、选拔人才

高考是普通高等院校招生的主要依据,通过高考可选拔出优秀的应届高中毕业生,为高等教育培养优秀人才,为国家各行各业输送人才。

2、推动教育发展

高考是中国教育体制的重要组成部分,有利于促进教育的发展和进步,推动教育教学模式的转变和创新,加强高等教育的质量和水平。

3、促进社会公平

高考是一种公平公正的选拔方式,不受贫富、地域等因素的影响,使每个应试者都有机会接受高等教育,从而促进社会公平和公正。

4、增强人才竞争力

高考成绩直接关系到考生的高校录取和专业选择,对于考生的未来职业发展具有重要意义,通过高考可以增强考生的人才竞争力,提高其就业和发展的机会。高考的意义不仅体现在教育领域,也体现在社会经济和人才培养方面。

2023山东高考数学用的是什么卷介绍如下:

2023年山东高考用新高考Ⅰ卷考试,满分750分。高考后试卷不能拿走,高考试卷会密封后送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种,要存档保留一定年限的,考生是无法再次接触到自己的高考试卷的。

高中数学提高成绩的方法

第一,只有通过不断的做题,才能对所学知识进行全面的掌握。

众所周知,高中的数学是比较难的,它涵盖的知识体系有很多,包括集合,不等式,函数,平面解析几何,微积分等相关的一些内容。

如果不通过做题直接考复习来进行准备的话,那很有可能与考试的要求不相符,毕竟他考试的内容覆盖面是非常广泛的。

尤其是在高考当中,他不仅仅是要考高三学的东西,还要考高一高二学的知识,要把整个高中阶段所学的知识都要来考察一遍。

第二,只有通过不断做题,实行题海战术才能提高考试分数。

因为高考的本质还是在分数,高考录取的关键一样在于分数,所以准备高考的目的是为了分数,学好数学的目的也是为了分数。

那想要获得分数很简单,就是在考试的过程当中会解决能够得到分数。有些时候我们并不要知道这个答案是怎么来的,我们只需要知道怎么解答出来就够了。