1.文科数学高考必考的知识点有哪些?

2.江苏文科数学选修中高考必考或常考的章节是什么,哪些比较难?

3.高考时文科的数学主要都考哪些内容

4.天津高考文科数学都考哪些知识点阿?

高考数学的考点文科_文科数学高考考点整理

高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。

文科数学高考必背公式

一、三角形公式

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bc*cosA

sin(A+B)=sinC

sin(A+B)=sinAcosB+sinBcosA

sin(A-B)=sinAcosB+sinBcosA

sin2A=2sinAcosA

cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2

tan2A=2tanA/[1-(tanA)2]

(sinA)2+(cosA)2=1

二、诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

三、函数

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.

(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

高考文科数学必背公式口诀

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

文科数学高考必考的知识点有哪些?

数学(文科)

1.增加的考点

直线与圆的方程;了解参数方程的概念

2.无删除的考点

3.提法有变化的考点

(1)三角函数中“了解正弦函数、余弦函数、正切函数的图象和性质”变为“理解正弦函数、余弦函数、正切函数的图象和性质”。

(2)三角函数部分,将考试要求中“同角三角函数基本关系式”移到了“考试内容”中。

(3)圆锥曲线中“理解椭圆的参数方程”变为“了解椭圆的参数方程”。

数学(理科)

1.无增加、删除的考点

2.提法有变化的考点

(1)三角函数“了解正弦函数、余弦函数、正切函数的图象和性质”变为“理解正弦函数、余弦函数、正切函数的图象和性质”。

(2)圆锥曲线“理解椭圆的参数方程”变为“了解椭圆的参数方程”。

(3)极限部分“理解闭区向上连续函数有最大值和最小值的性质”变为“了解闭区向上连续函数有最大值和最小值的性质”。

[解读]

数学文、理科考纲的变化不大,大部分调整只是在表述上进一步规范化,使之更贴近考试的要求。仅在个别内容上要求有所提高。文科增加了“直线与圆的方程”和“了解参数方程的概念”内容,这两处考点对考生的要求不高,难度也不会太大。

从考纲变化的趋势上看,高考将提高对向量的运用要求,另外,对三角函数的要求也要提高一个层次,如将过去要求的“·了·解正弦函数、余弦函数、正切函数的图象和性质”改为了“·理·解正弦函数、余弦函数、正切函数的图象和性质”;理科增加了“·了·解参数方程的概念”,文科增加了“·理·解圆的参数方程”。

江苏文科数学选修中高考必考或常考的章节是什么,哪些比较难?

选择:集合、面积体积、三角系列、概率、函数、向量、不等式、圆锥曲线、复数

大题:概率、三角函数、数列、几何、圆锥曲线、极限、导数、直线与圆、不等式。

范围都在必修12345和选修1-1、1-2、4-4.内

考点也就那几个

集合、

复数、

概率、

椭圆、

双曲线、

抛物线、

命题、

等差、

等比、

框图、

三角函数、

解三角、

三视图、

求体积、求面积、

解不等式、

向量、

线性、

树状图、

方差、

解析几何、

求导、

坐标系、

对数、指数、

圆。

高考时文科的数学主要都考哪些内容

选修1-1中常考也是必考的章节是逻辑用语、圆锥曲线、导数的应用,其中圆锥曲线、导数的应用比较难。

选修1-2中常考也是必考的章节是复数的代数形式的运算、框图、推理证明、统计案例,其中复数的代数形式的运算比较简单,框图读懂算法的话也不复杂,推理证明一般在立体几何第一问中体现的较简单,统计案例只要能熟记公式理解原理,提醒一般看着字数多但不难。

天津高考文科数学都考哪些知识点阿?

高考时文科的数学主要考试内容如下:

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次是函数图象。

2.面对含有参数的初等函数来说,在研究的时候应该抓住参数有没有影响到函数的不变的性质。如所过的定点,二次函数的对称轴或是?; 如果产生了影响,应考虑分类讨论。

3.填空中出现不等式的题目(求最值、范围、比较大小等),优选特殊值法;

4.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

6.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式问题;

7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道

第3/4页

曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可(多观察图形,注意图形中的垂直、中点等隐含条件);个别题目考虑圆锥曲线的第二定义。

9.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

10、向量问题两条主线:转化为基底和建系,当题目中有明显的对称、垂直关系时,优先选择建系。

11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

12.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知(即有平方关系),可使用三角换元来完成;

13.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

14.与图象平移有关的,注意口诀“左加右减,上加下减”只用于函数

15.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,二是中点在对称轴上。

第一章 平面向量

基础知识

1.向量

2.向量的加法与减法

3.平面向量的表示方法

4.平面向量的坐标运算

5.实数与向量的积

6.平面向量的数量积

7.向量与实数

8.向量的性质

9.向量的夹角公式及应用

10.平面向量的基本定理

11.线段的定比分点

12.平面两点间的距离

13.平移

14.基础习题

高考试题分类

1.向量的线性运算

2.向量的数乘运算

3.向量的位置关系

4.向量的几何运算

5.有向线段与分比

6.比例综合计算

综合性高考试题

1.向量平衡性质的应用

2.向量的三角综合运算

第二章 集合与简易逻辑

基础知识

1.集合

2.子集和真子集

3.补集

4.交集

5.并集

6.韦恩图与摩根律

7.四种命题

8.逻辑联结词

9.常见数学逻辑符号

10.充分条件和必要条件

11.基础习题

高考试题分类

1.逻辑符号表达

2.集合性质的应用

3.集合定义问题

4.集合相等的判断

5.集合图形法的应用

6.两两相交的多个集合的并集的求法

7.命题与逆否命题

8.充要条件

综合性高考试题

1.集合的比较

2.集合与排列组合

第三章 函数

基础知识

1..映射和一一映射

2.坐标系和象限

3.函数和反函数

4..函数的单调性和奇偶性

5.函数的对称

6.函数的自身对称

7.定义域与值域

8.函数平移和坐标系平移

9.指数和对数

10.幂函数、指数函数和对数函数

11.一元二次函数的性质

12.基础习题

高考试题分类

1.函数的定义域与值域

2.函数图像的应用

3.函数与反函数的变换

4.函数对称的应用

5.函数平移和坐标系平移的应用

6.分角和倍角的象限

7.函数单调性和奇偶性的综合应用

8.幂函数、指数函数和对数函数的性质及图像

9.复合函数

10.一元二次方程与韦达定理的应用

11.分段函数的单调性

综合性高考试题

1.函数对称的延伸

2.函数与定点

3.函数的综合应用

4.信息定义

第四章 不等式

基础知识

1.不等式的基础

2.不等式的基本性质

3.不等式的证明

4.几个重要公式

5.不等式的解法

6.含绝对值的不等式

7..绝对值不等式的解法

8.二元一次不等式与不等式区域

9.曲线的不等式区域

10.基础习题

高考试题分类

1.不等式公式的应用

2.几类不等式的最值求法

3.反证法和数学归纳法

4.不等式区域的应用

5.不等式方程的求解

6.分段函数不等式的求解

7.不等式与一元二次方程

8不等式方程和函数的综合

9.绝对值方程与绝对值不等式的应用

10.不等式应用

综合性高考试题

1.几类不等式的证明思想

2.数学归纳法思路

3.不等式的综合应用

4.一元二次方程的综合分析

第五章 三角函数

基础知识

1.角的度数和弧度制

2.三角形的基本特征

3.三角形的正弦定理和余弦定理

4..三角函数

5.三角函数与象限

6.两角和与差的正弦、余弦、正切

7..二倍角的正弦、余弦、正切

8.正弦函数、余弦函数图像的性质

9.正切函数图像的性质

10.五点法画正、余弦函数

11.反三角函数

12.斜三角形解法

13.三角函数基本公式

14..三角函数补充公式

15.基础习题

高考试题分类

1.三角函数的象限

2.三角函数性质和图像

3.三角函数的周期性和单调性

4.三角函数的化简求解

5.三角函数与向量

6.三角形与正、余弦定理

7.三角函数的极值求解

8.斜三角形的求解

综合性高考试题

1.绝对值与三角函数

2.三角函数的综合求解

3.构造法与三角函数求解

4.三角函数最值的求法

5.三角形的综合解法

6.斜三角形的综合应用

第六章 数列

基础知识

1.数列

2.等差数列

3.等差数列的典型性质

4.等比数列

5.等差数列的典型性质

6.倒数数列

7.几种典型的Sn→an递推关系式

8.几种典型的an+1→an递推关系式

9.几种典型的an→n递推关系式

10.几种典型的数列之和或积的形式

11.几种典型的Sn+1→Sn递推关系式

12.基础习题

高考试题分类

1.等差数列的基本应用

2.等差数列的综合应用

3.等比数列的基本应用

4.等比数列的综合应用

5.倒数数列的求解

6.数列与方程

7.算法与数列

综合性高考试题

1.等差等比数列的综合应用

2.错位相消法的应用

3.复杂定义的数列分析

4.数列和不等式的综合应用

5.几类复杂的数列递推式

第七章 直线和圆的方程

基础知识

1.点与点的距离

2.斜率和直线方程

3.直线关系和斜率

4.点到直线的距离

5.直线与曲线的关系

6.曲线与方程

7.点与曲线的关系

8.点与面的关系

9.简单的线性规划问题

10.圆的基本性质

11.圆的典型特征

12.圆的典型问题

13.四点共圆的条件

14.基础习题

高考试题分类

1.直线方程的应用

2.点线距离的应用

3.直线关系的简单应用

4.圆的性质应用及参数方程

5.直线与圆的关系的应用

6.圆内截弦的性质应用

7.圆和直线相关证明题

综合性高考试题

1.圆的综合应用

2.圆过定点问题

3.圆的极值问题

第八章 圆锥曲线方程

基础知识

1.椭圆的标准方程

2.椭圆的几何性质

3.椭圆的参数方程

4.椭圆的典型特征

5.椭圆的物理性质

6.双曲线的标准方程

7.双曲线的几何性质

8.双曲线的物理性质

9.抛物线的标准方程

10.抛物线的几何性质

11.抛物线的物理性质

12.抛物线的典型特征

高考试题分类垒

1.椭圆的性质应用

2.双曲线的性质应用

3.抛物线的性质应用

4.圆锥曲线与三角形的综合

5.圆锥曲线与圆的综合

6.圆锥曲线与直线方程

7.三种圆锥曲线的关联问题

综合性高考试题

1.椭圆的综合应用

2.双曲线的综合应用

3.抛物线的综合应用

4.圆锥曲线的极值求解

5.圆锥曲线的综合求解

第九章 直线与平面

基础知识

1.平面的基本性质

2.平面图形直观图的画法

3.平行直线

4.异面直线

5.直线与平面

6.三垂线定理及其逆定理

7.两个平面的位置关系

8.线面关系中的反证法应用

9.二面角及其平面角

10.空间向量

11.空间向量的夹角公式

12.直线的方向向量

13.平面的法向量

14.空间向量的应用

高考试题分类

1.空间上直线与直线的关系

2.直线与平面性质的应用

3.直线与平面的关系计算

4.空间上三角形与平面的关系

5.二面角的性质

6.空间向量的性质

综合性高考试题

1.线面夹角的综合应用

2.二面角的综合应用

3.空间向量的综合应用

第十章 简单几何体

基础知识

1.多边形的特征;

2.多面体、凸多面体和正多面体

3.棱柱

4.棱锥

5.球体的性质

6.正四面体与正方体

7.投影与视图

8.基础习题

高考试题分类

1.多面体的性质和拆分

2.多面体的截面形状

3.多面体上的共面问题

4.棱锥和棱柱的求解

5.正方体与正四面体

6.球体的基本性质

7.球的内接多面体和外切多面体

8.正三角形与圆、正四面体与球

9.视图与投影的应用

10.多面体的几何证明

综合性高考试题

1.多面体上线面夹角的综合应用

第十一章 排列、组合、二项式定理

基础知识

1.分类计数原理与分步计数原理

2.排列与排列数公式

3.组合与组合数公式

4.组合数的两个性质

5.二项式定理

6.排列组合的题型和原则

高考试题分类

1.排列组合的基本性质

2.排列组合中的对等问题

3.排列组合中的不对等问题

4.特殊优先原则的应用

5.排列组合反向思维的应用

6.相邻的排列组合问题

7.树图法在排列组合中的应用

8.二项式展开式的应用

9.幂指数的求解

10.简单几何问题的排列组合

综合性高考试题

1.二项式中的若干等式

2.总和限定的组合方式

第十二章 概率与统计

基础知识

1.随机事件与概率

2.独立事件与互斥事件

3.相互独立事件同时发生的概率

4.概率计算中完备性、纯粹性和平等性

5.离散型随机变量

6.抽样

7.方差与标准差

8.基础习题

高考试题分类

1.均值和方差的应用

2.总体抽样和分层抽样

3.概率和数学期望的基本应用

4.概率应用的反向思考

5.标准公式Pn(k)=Cn^kP^k(1-P)^(k)的应用

6.统计应用

综合性高考试题

1.概率的综合应用

2.由对立事件发生概率求事件发生概率

3.方案比较

第十三章 导数

基础知识

1.导数的概念

2.两个函数的和、差、积、商和导数

3.基本导数公式

4.导数的应用

5.导数与极值

高考试题分类

1.导函数、曲线的斜率和切线方程

2.导数与函数单调性

3.导数与极值的应用

综合性高考试题

1.导数的综合求解

2.导数法比较函数

3.导数的实际应用

第十四章 复数

基础知识

1.复数的概念

2.复数的加法和减法

3.复数的乘法和除法

4.基础习题

高考试题分类

1.复数的性质

2.复数的基本运算

综合性高考试题

1.复数运算技巧

第十五章 高考中智力趣味问题

试题分类

1.比较题

2.进制分析

3.概念剖析

解法归纳

1.折中法

2.特值法

3.系数之和的综合求解

高考试题综合思路

1.反向思维

2.灵活思想

3.规则应用思想

4.观察思想

5.拆分思想

6.对比思想

附录 课改选修内容

1.极坐标系

2.参数方程

3.几何证明

4.线性回归方程