1.2022全国新高考Ⅱ卷文科数学试题及答案解析

2.2011年浙江理科高考数学填空题求解!具体步骤!

3.2011年浙江省理科数学高考题

4.2018年浙江高考数学试卷试题及答案解析(答案WORD版)

浙江高考数学卷答案解析,浙江高考答案数学

2019 年浙江省高考信息模拟卷数学(一 )

试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,全卷满分 150 分,考试时间 120 分钟. 第 I 卷(选择题 共 40 分)

一、选择题(本大题共 10 小题,每小题 4 分共 40 分,在每小题给出的四个选项中,只有一项

是符合题目要求的. )

1. 已知集合 2 x ,则 ( ) M {x |y x ? 4x ? 5}, N {y | y ln(e +1)} (C M ) N R A. (1,5) B. (0,5) C. (1,5] D. (0,5] | z1 |

2. 若z1 3=?i, z 2 1=+3i ,则 ( ) | z2 | A. 1 B. 2 C. 3 D. 10 | a |?b

3. 已知a,b ?R ,则“ ”是a ?|b |的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

4. 设函数 ,则 的奇偶性 ( ) f (x ) sin(?x =+?)( 0) f (x ) A.与 有关,且与 有关 B.与 有关,但与 无关 C.与 无关,且与 无关 D.与 无关,但与 有关 V ,V V ?V

5. 两个几何体的三视图如图所示,记几何体的体积为 1 2 ,则 2 1 ( ) 2 2 A. B. C. D. 3 6 3 6 ? x ? 3y ? 0

6. 已知 ,点 ,则 S {(x , y ) |?x =+ 3y ? 6 3 ? 0} P( 3,3), T {N | PM =+PN 0,M =?S} ? x ? 0 S T 的面积为 ( ) A. 3 3 B. 6 C. 6 3 D. 9

7. 如图,已知正四棱锥P ?ABCD 的各棱长均相等 ,M 是 上的动点(不包括端点), 是 的中点,分别记 AB N AD 二面角P ?MN ?C ,P ?AB ?C ,P ?MD ?C 为?,?,? , 则 ( ) A.? B.? C.? D.?

8. 对函数f (x ) x 2 =+a ln(x 4 +x 2 +1)(x ?R ) 的极值和最值情况,一定 ( ) A.既有极大值,也有最大值 B.无极大值,但有最大值 C.既有极小值,也有最小值 D.无极小值,但有最小值 2 2 x y F E : + 1(a =?b ? 0)

9. 如图,点 为椭圆 2 2 的右焦点 , a b 2 2 2 M y 点 时圆O : x + y b 上一动点( 轴右侧) ,过 M 作圆 的切线交椭圆于A,B 两点,若?ABF 的周长 O 为3b ,则椭圆 的离心率为 ( ) E 2 2 5 3 A. B. C. D. 3 2 3 2 R f (?x ) +f (x ) x 2 x ? 0

10.定义在 上的可导函数f (x ) 满足 ,当 时,f '(x ) ?x ,则不等式 1 3 2 f (x +1) ?f (2x ) ? +x ? x 的解集为 ( ) 2 2 A. [1,+?) B. (,1] C. (,2] D. [2,+?) 第 II 卷(非选择题 共 110 分)

二、填空题(本大题共 7 小题,多空题每小题 6 分,单空题每小题 4 分,共 36 分. )

11.集合 , ,则 , U {x |1=? x ? 9, x? N} A {1,3,5,7}, B {5,6,7,8,9} A B (C A) (C B) . U U ? 3 ? 2

12.若sin( ) , ?=? (0, ) ,则sin? ,sin2? +cos ? . 4 5 2

13.双曲线E : 4x2 ? y 2 1 ,则渐近线方程为 ,以焦点为圆心,与渐近线相切得 圆的面积为 .

14.已知x2 +x8 a =+a (2 +x ) +a (2 +x )2 + +a (2 +x )8 ,则a , 0 1 2 8 7 a +a +a + +a +a . 0 1 2 7 8

15.甲乙两袋中各有4 个大小相同,形状一样,质地均匀的小球,其中甲袋中3 红1 白,乙袋中 3 白1 红,现同时从甲乙两袋中各摸出2 个球交换,则交换后甲袋中红球的个数 的数学期 ? 望E (?) .

16.已知 满足| a | 2,(a =+b)?b 8 ,则 的取值范围为 . a,b a ?b a

17.设函数f (x ) 1=?x + 4 ?x ,g (x ) (a =?R ) ,若对任意的x ?(0,1) ,恒有f (x ) ? x a g (x ) 成立,则实数 的取值范围是 多少?

全部题请看如下:

2022全国新高考Ⅱ卷文科数学试题及答案解析

1-5.DDACB 6-10. ACBCA

11.160 12.2/5 13.1/120 14. [0,7/2] 15.-16 16.3/2 17. 9/4

2011年浙江理科高考数学填空题求解!具体步骤!

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

2011年浙江省理科数学高考题

16.设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.

考点:基本不等式.

专题:计算题;转化思想.

分析:设t=2x+y,将已知等式用t表示,整理成关于x的二次方程,二次方程有解,判别式大于等于0,求出t的范围,求出2x+y的最大值.

解答:解:∵4x2+y2+xy=1

∴(2x+y)2-3xy=1

令t=2x+y则y=t-2x

∴t2-3(t-2x)x=1

即6x2-3tx+t2-1=0

∴△=9t2-24(t2-1)=-15t2+24≥0

解得

∴2x+y的最大值是?

故答案为

点评:本题考查利用换元转化为二次方程有解、二次方程解的个数由判别式决定.

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

设实数x、y是不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0},若x、y为整数,则3x+4y的最小值为

A.14; B. 16; C. 17; D. 19

解:作直线L?:x+2y-5=0,设其与x轴的交点为A(5,0);再作直线L?:2x+y-7=0,设其与L?的

交点(3,1)为B,与y轴的交点(0,7)为C;那么由不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0}所规定的区域就是x轴的上方(含x轴),y轴的右方(含y轴),折线ABC的右上方的所围的半开放区域。

由于不等式x+2y-5>0,2x+y-7>0都不带等于号,故折线ABC上的点都不能算在上面指定的区域

内。又x,y是整数,那么最接近这个区域边界的点从右到左依次排列为:(6,0);(5,1);(4,1)

(3,2);(2,4);(1,6);(0,8).共7个点,那么这些点中使3x+4y的值最小的点是点(4,1),其值=3×4+4×1=16,故应选B。

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一中特级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。