高考数学87_高考数学80
1.1987年江苏常州高考是全国卷吗
2.语文考76,数学考88,英语考95,总分能进三名吗?单科能进前五名吗?
3.总结一下高考数学基本公式
4.1987年高考语文数学总分各是多少?
数学题高考一般不会考特别难,如果考特别难,那就是大家一起遭,所以不用太担心,首先不要有太大的心里负担,这个很重要,心理不好的话,可能会影响其他科的成绩。
数学复习,高考之前的复习,最主要的是复习基础知识,复习些简单的提醒,搞不懂的难题就不要深究,把基础知识整牢固,争取基础知识不掉分,争取大题多得分。
其次就是平时考试的卷子,选择填空的容易错的题,多看几遍,记牢固,大题就看简单点的,稍微难点的也可以看,但是最后那道瞅两眼就的了,不用太深究,毕竟你的目标知识90分。难题做多了,发现自己什么都做不来的话,会打击你的信心的,划不来
总之一句话,最重要的就是基础,基础千万千万整牢固。
1987年江苏常州高考是全国卷吗
综述:2007年江苏高考平均分如下: 语文:88分、数学:80分、英语:89分、物理:87分、化学:88分、生物:105分、政治:95分、历史:94分、地理:100分 。江苏省第二高级中学成绩比较好。
泰兴市第二高级中学坐落在泰兴城区兴燕路91号,2001年5月升格为泰州市重点高中,2005年11月晋升为江苏省三星级高中。学校现有57个班级, 3060名学生。
学校获奖情况:
2003年至2008年连续六年获全市高中教学质量综合考核一等奖。学校先后被评为“泰兴市文明单位”、“泰州市优秀家长学校”、“江苏省德育科研先进实验学校”、“全国教育科学‘十五’规划国家重点课题先进实验学校”、“全国百所德育名校”。
百度百科-江苏省泰兴市第二高级中学
语文考76,数学考88,英语考95,总分能进三名吗?单科能进前五名吗?
1987年是全国卷。
1987年江苏常州高考高考属于全国统考,都是统一考试,考试形式分文科和理科进行考试。
1987年高考语文、数学各是120分,生物70分,其余100分包括物理、化学、政治和英语,总分共710分。
总结一下高考数学基本公式
语文考76,数学考88,英语考95,总分能进三名吗?单科能进前五名吗?
不一定。你同学都考多少?如果这次的题目偏,别人语文都50,60的话,你这不就是最高分嘛。英语和数学通常有人满分。
语文93分数学87分英语99分能进前十名吗?必须要看其他同学的成绩
都考得很好,那这个成绩估计不行
如果其他同学考得不好,那才有可能
比较才出成绩
我中考语文122.5 数学129 英语146能进2中吗因该可以
四年级语文考86数学考73英语88解答:就我个人而言,您的总体成绩还行,但数学有些偏低(说句题外话,鄙人的数学也不咋地)
分析:从您的描述来看,语文、英语尚可,主要弱点在于数学,今后要多加强数学方面的联系,
下面是网友们提供的一些方法,您可以借鉴:
做题慢和数学成绩不理想,往往不是因为做题少、花费时间短和学习不努力,而是由于不会观察和灵活思考,没有养成机制灵活的做题习惯。一个模式,照搬套用,机械重复,时间一长,就成了做题机器。成人计算是为了结果,学生计算重在过程,只有在做题过程中才能开发潜能、启迪思路和活跃思维。用改错本,把做错的题找到原因记录下来,复习的时候重点复习就行了。.练习加总结,总结不是单单把题抄下来,正确答案写下来就算完事了。问题大概分成三类:1.一看就会,但是还做错的。这类题尤其要注意,对我们来说是一个提醒,提醒我们下次小心;2.自己感觉会,但是一做就乱的。这说明你知识点有漏洞,需要做补充;3.一看就没思路,一看答案恍然大悟的。这些知识点是你容易遗忘的,也分类记下。如此做到总结一道胜做十道,而不要在题海中游泳。
最后,为了您的理想,要加油哦!鄙人在此默默祝福您来年成绩有所突破。
希望我的回答对您有所帮助!
永宁一小287分考进前五名吗?请问你是哪省的?高考总分是多少/ 不管考多少分,都是可以注册入学的1719
小学四年级语数英总分280能进前十名吗
分数切线还没出来
一中录取时是先看考级科的 不能有C D。
这关过了再看总分
就是语数英分数加上考级科等级折成分数相加(A 5分 B 2 分 )
语数英402 估计你考级科也不会差 这成绩进一中问题不大
语文总分100,数学总分100,英语总分50,我考了160分,能不能进潮州金山中学估计不行,潮州金中是潮州最好的高中
物理92,英语103,数学104,语文99(语文没考过这么差)全年级600人能进前200吗?这个跟题有关系,也和你周围同学的学习程度有关。希望以积极的心态对待考试成绩,找出不足,继续努力,争取下次考得更好!
我很伤心,这次毕业考只得了全镇第四名,没进前三名,语文92.5,数学95,英语94 总分281.5,和第一名差10这个人是在炫耀自己,不要被他所迷惑,我心理学很好,一看就明白了。大家的回答应该是:是的!你很笨!
这都值得炫耀,那我小升初时我还语文98.5,数学100,英语97,综合100,总分395.5,全市第3,我不值得炫耀?
成绩一直20名左右,初三有可能进前五名吗?有!不过你要付出艰辛和汗水,坚持到底,不能空有信念,否则前十都进不了!
1987年高考语文数学总分各是多少?
十字交叉双乘法没有公式,一定要说的话
那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方
1.因式分解
即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果唯一,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的差异,那么f(x)可以唯一的分解为以下形式:
f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。
(*)或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53
初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等
要求为:要分到不能再分为止。
2.方法介绍
2.1提公因式法:
如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。
例15x3+10x2+5x
解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。
解:原式=5x(x2+2x+1)
=5x(x+1)2
2.2公式法
即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)
说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。
例2分解因式:①x6-y12②1+x+x2+…+x15
解析各小题均可套用公式
解①x6-y12=(8x3-y6)(8x3+y6)
=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)
②1+x+x2+…+x15=
=(1+x)(1+x2)(1+x4)(1+x8)
注多项式分解时,先构造公式再分解。
2.3分组分解法
当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。
例1分解因式:x15+m12+m9+m6+m3+1
解原式=(x15+m12)+(m9+m6)+(m3+1)
=m12(m3+1)+m6(m3+1)+(m3+1)
=(m3+1)(m12+m6++1)
=(m3+1)[(m6+1)2-m6]
=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)
例2分解因式:x4+5x3+15x-9
解析可根据系数特征进行分组
解原式=(x4-9)+5x3+15x
=(x2+3)(x2-3)+5x(x2+3)
=(x2+3)(x2+5x-3)
2.4十字相乘法
对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法,
即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行操作。
例3分解因式:①x2-x-6②6x2-x-12
解①1x2
1x-3
原式=(x+2)(x-3)
②2x-3
3x4
原式=(2x-3)(3x+4)
注:“ax4+bx2+c”型也可考虑此种方法。
2.5双十字相乘法
在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:
(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图
(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含x的一次项
例5分解因式
①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2
③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2
解①原式=(2x-3y+1)(2x+y-3)
2x-3y1
2xy-3
②原式=(x-5y+2)(x+2y-1)
x-5y2
x2y-1
③原式=(b+1)(a+b-2)
0ab1
ab-2
④原式=(2x-3y+z)(3x+y-2z)
2x-3yz
3x-y-2z
说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。
如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)
④式三个字母满足二次六项式,把-2z2看作常数分解即可:
2.6拆法、添项法
对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之差或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是唯一,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。
例6分解因式:x3+3x2-4
解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3)
法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4)
法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4)
法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)
法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等
解(选择法四)原式=x3-x2+4x2-4
=x2(x-1)+4(x-1)(x+1)
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
2.7换元法
换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此
种方法对于某些特殊的多项式因式分解可以起到简化的效果。
例7分解因式:
(x+1)(x+2)(x+3)(x+4)-120
解析若将此展开,将十分繁琐,但我们注意到
(x+1)(x+4)=x2+5x+4
(x+2)(x+3)=x2+5x+6
故可用换元法分解此题
解原式=(x2+5x+4)(x2+5x+6)-120
令y=x2+5x+5则原式=(y-1)(y+1)-120
=y2-121
=(y+11)(y-11)
=(x2+5x+16)(x2+5x-6)
=(x+6)(x-1)(x2+5x+16)
注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?
2.8待定系数法
待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。
例7分解因式:2a2+3ab-9b2+14a+3b+20
分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法
先分解2a2+3ab+9b2=(2a-3b)(a+3b)
解设可设原式=(2a-3b+m)(a+3b+n)
=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………
比较两个多项式(即原式与*式)的系数
m+2n=14(1)m=4
3m-3n=-3(2)=>
mn=20(3)n=5
∴原式=(2x-3b+4)(a+3b+5)
注对于(*)式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n
令a=1,b=0,m+2n=14m=4
=>
令a=0,b=1,m=n=-1n=5
2.9因式定理、综合除法分解因式
对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0
由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数
若f()=0,则一定会有(x-)再用综合除法,将多项式分解
例8分解因式x3-4x2+6x-4
解这是一个整系数一元多项式,因为4的正约数为1、2、4
∴可能出现的因式为x±1,x±2,x±4,
∵f(1)≠0,f(1)≠0
但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法
21-46-4
2-44
1-220
所以原式=(x-2)(x2-2x+2)
当然此题也可拆项分解,如x3-4x2+4x+2x-4
=x(x-2)2+(x-2)
=(x-2)(x2-2x+2)
分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握!
-------------------------------------------------------------------------------------------------------------
不知道你是什么教材的
初中的都给你好了
-------------------------------------------------------------------------------------------------------------
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d wc呁/S∕ ?
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r ?
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公*弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长扑愎 剑篖=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b^2-4ac=0 注:方程有两个相等的实根
b^2-4ac>0 注:方程有两个不等的实根
b^2-4ac<0 注:方程没有实根,有*轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
太多了,你自己去下载吧
这里有
而且很全
数学、物理、化学都有哦
1987年高考语文、数学各120分。文理各科分数及其总分如下:
理科:
语文120,数学120,英语100,物理100,化学100,政治100,生物70,总分710分。
文科:
语文120,数学120,英语100,历史100,地理100,政治100,总分0分。
1985年,教育部规定:可以从参加统一高考的考生中招收少数国家计划外的自费生。一向由国家“统包”的招生制度,变成了不收费的国家计划招生和收费的国家调节招生同时并存的“双轨制”。同年,从美国引进标准化考试,并于当年首先在广东省进行了英语、数学两科的试点。
1985年,上海在全国最先获得自主命题权。同年,国家教委决定在北京大学等43所高等学校进行招收保送生的试点。
1989年8月,国家教委决定将标准化考试逐步在全国推行。
扩展资料:
1、符合下列条件的人员,可以申请报名:
(1)遵守中华人民共和国宪法和法律;
(2)高级中等教育学校毕业(含应届生)或具有同等学力;?
(3)身体状况符合相关要求。
2、下列人员不得报名:
(1)具有高等学历教育资格的高校的在校生,或已被高校录取并保留入学资格的学生;
(2)高级中等教育学校非应届毕业的在校生;
(3)在高级中等教育阶段非应届毕业年份以弄虚作假手段报名并违规参加普通高校招生考试(包括全国统考、省级统考和高校单独组织的招生考试,以下简称高校招生考试)的应届毕业生;
(4)因违反国家教育考试规定,被给予暂停参加高校招生考试处理且在停考期内的人员;
(5)因触犯刑法已被有关部门采取强制措施或正在者。
参考资料:
百度百科-高考声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。