1.2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都

2.2017全国卷2,数学导数题目,解第二问,用分离参数构造新函数转化为最值问题解。拒绝灌水回答

2017年高考数学试卷全国二卷答案_高考2017数学二卷答案

2017年浙江省高考数学试卷,延续了浙江省多年的数学命题特色,简约中显大气,朴实中有灵气。

试题情景熟悉,充分考查了学生的数学素养、思维品质与学习潜能,体现出较强的区分度和选拔功能。

今年的数学高考试卷,是浙江省自主命题以来出得好的试卷之一。试题立足基础知识、基本技能,一路下来行云流水,拾阶而上。试题体现了很好的区分度,基本上会让考生有多少水平就能拿多少分。

试卷注重对能力的考查,强调数学思维与本质,要求深刻理解概念,并能合理转化、灵活运用。如选择题第9、10题,填空题第17题,解答题第20、21、22题,设问层次递进,这样的设计,对不同的基础、不同的能力水平的学生都提供了适当的思考空间,体现了较好的区分度,凸显了试卷的选拔功能。但想顺利解决,需要学生具有较强的思维能力和解题能力。

2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都

要找一个接近0的数x,且h(x)要大于0

h(x)里含有lnx, 用e的某次方可以去ln

你可以试一下e的负一次方,h(e的负一次方)是小于0的

e的负一次方还不够接近0,取e的负二次方,很容易得到h(e的负二次方)大于0

如果取h(0.01),由于有ln,难以知道正负,除非有计算器,全国二卷是不能带计算器的。

2017全国卷2,数学导数题目,解第二问,用分离参数构造新函数转化为最值问题解。拒绝灌水回答

3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。

参考答案为-16,18.只取第一象限点了

最简单的做法是数型结合

(1)(-∞,-1-√2)减函数

(-1-√2,-1+√2)增函数

(-1+√2,+∞)减函数

在通过二阶导f''(x),可以近似画出f(x)图形

(2)第二问,f(0) = 1

设直线g(x) = ax +1 ,过(0,1)

在x>=0时,f(x) <= g(x)

也就是g(x)在x>=0区域横在f(x)上方,于是容易知道临界条件,直线在(0,1)和f(x)相切,

切线斜率容易求得 为1

摆动之间g(x)易得,a>=1时,g(x)在x>=0区域横在f(x)上方,满足f(x) <=ax+1

所以a >=1