2014高考数列题-2014高考题数学
1.高中数学的数列问题
2.数学数列高考题!!要答案讲解
3.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
4.数学高考关于数列的题。在线等急
5.高考数列大题求解
6.数列问题(高考题)越快越好,要有解答。
高中数学的数列问题
概念
按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成
a1,a2,a3,…,an,…
简记为{an},项数有限的数列为“有限数列”(finite sequence),项数无限的数列为“无限数列”(infinite sequence)。
从第2项起,每一项都大于它的前一项的数列叫做递增数列;
从第2项起,每一项都小于它的前一项的数列叫做递减数列;
各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;
各项呈周期性变化的数列叫做周期数列(如三角函数);
各项相等的数列叫做常数列。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。
数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)
等差数列
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。
缩写
等差数列可以缩写为A.P.(Arithmetic Progression)。
等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。
通项公式
an=a1+(n-1)d
前n项和
Sn=n(a1+an)/2=n*a1+n(n-1)d/2
性质
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k-1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
应用
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
等比数列
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。
缩写
等比数列可以缩写为G.P.(Geometric Progression)。
等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
通项公式
an=a1q^(n-1)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)
性质
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
应用
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息赫本金价在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q不等于 1)
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
一般数列的通项求法
一般有:
an=Sn-Sn-1
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
读者注
在等差数列中,总有Sn S2n-n S3n-2n
2S2n-n=(S3n-S2n)Sn
即三者是等比数列,同样在等比数列中。三者成等差数列
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
(二)1.等比数列:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1,am=a1*q^(m-1))
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am×an=ap×aq
2.等比数列前n项和
设 a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推倒的,这时可能要直接从基本公式推倒过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下4个方法: 1,不完全归纳法 2 累乘法 3 错位求和法
数学数列高考题!!要答案讲解
am+n=am+an或者am+n=am+an+1
a2=0,而且a2=a1+a1或者a2=a1+a1+1
因为an每一项都为非负实数,那么a1=a2=0
a3>0,a3=a2+a1+1=1
a4=a3+a1=a2+a2=1(楼主应该能推出这个吧)
a100=a10+a90(+1),a90=a10+a80(+1)
最后一定能化得
a100=10*a10+n(n>0,能理解吧?)
因为这个an每一项都是整数(因为前几项就只有整数了嘛)
所以这个a10=1,2或者3
明显a10不能等于1
因为a10=a1+a9(+1)=a1+a2+a7(+2)=a1+a2+a3+a4(+3)
假如没有+3,a10都至少等于a3+a4=2
然后a10=a6+a4(+1)=a3+a3+a4(+2)
同样道理,a10也不会等于2
那么a10=3
高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
数学高考关于数列的题。在线等急
B1+C1=2A1 A不变,B1>C1 得B1>A1>C1
B是按C和A来的,C是按B和A来的,那么就会一大一小(就是说当n为1,3,5.....时B>A>C,当n 为2,4,6.....时C>A>B),其实这都无所谓
Sn是面积,底X高,底就用A,那么就是高了,B+C=2A(A不变,就为常数)
那么当B=C=A时,高最大,B和C 都是前面的C+A和B+A的一半,最后会越来越靠近B=C=A
所以Sn是增的
选B
具体解释那要看你是哪个年级而定了,因为有些题可能是超纲的
如果正在学数列的话,我可以给你这个题目的解题过程
高考数列大题求解
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
数列问题(高考题)越快越好,要有解答。
Xn=PXn-1-QXn-2
Xn-PXn-1+QXn-2=0 --------------(1)
将其化成下面格式(待定系数法):
Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)
将(2)式展开,然后与(1)式的各项比较得:
A+B=P -------------(3)
A*B=Q -------------(4)
因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β
Xn-α*Xn-1=β(Xn-1-αXn-2) ----------------(5)
依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:
Xn-1-α*Xn-2=β(Xn-2-αXn-3)-----------------(5.1)
Xn-2-α*Xn-3=β(Xn-3-αXn-4)-----------------(5.2)
Xn-3-α*Xn-4=β(Xn-4-αXn-5)-----------------(5.3)
......
X4-α*X3=β(X3-αX2)-----------------(5.n-4)
X3-α*X2=β(X2-αX1)-----------------(5.n-3)
(5)*(5.1)*(5.2)*(5.3)*...*(5.n-4)*(5.n-3)并消掉相同项:
Xn-α*Xn-1=(X2-αX1)*β^(n-2)
Xn=(X2-αX1)*β^(n-2) + α*Xn-1
=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + α^2*Xn-2
=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2 + α^2*Xn-2
... ...
=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2+...+(X2-αX1)*β^(n-m)*α^(m-2)+...+(X2-αX1)*α^(n-2) + α^(n-1)*X1
等比数列求和(公比为:α/β) + α^(n-1)*X1
过程比较复杂,建议你参考:
斐波那挈数列通项公式的推导:
斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}√5表示根号5
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。