1.高中数学的数列问题

2.数学数列高考题!!要答案讲解

3.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.

4.数学高考关于数列的题。在线等急

5.高考数列大题求解

6.数列问题(高考题)越快越好,要有解答。

高中数学的数列问题

2014高考数列题-2014高考题数学

概念

按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成

a1,a2,a3,…,an,…

简记为{an},项数有限的数列为“有限数列”(finite sequence),项数无限的数列为“无限数列”(infinite sequence)。

从第2项起,每一项都大于它的前一项的数列叫做递增数列;

从第2项起,每一项都小于它的前一项的数列叫做递减数列;

各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;

各项呈周期性变化的数列叫做周期数列(如三角函数);

各项相等的数列叫做常数列。

通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。

如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).

表示方法

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1

如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)

等差数列

定义

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。

缩写

等差数列可以缩写为A.P.(Arithmetic Progression)。

等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。

通项公式

an=a1+(n-1)d

前n项和

Sn=n(a1+an)/2=n*a1+n(n-1)d/2

性质

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k-1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

应用

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

若为等差数列,且有an=m,am=n.则a(m+n)=0。

等比数列

定义

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。

缩写

等比数列可以缩写为G.P.(Geometric Progression)。

等比中项

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

通项公式

an=a1q^(n-1)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)

性质

任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

性质:

①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

应用

等比数列在生活中也是常常运用的。

如:银行有一种支付利息的方式---复利。

即把前一期的利息赫本金价在一起算作本金,

在计算下一期的利息,也就是人们通常说的利滚利。

按照复利计算本利和的公式:本利和=本金*(1+利率)^存期

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

(1)等比数列的通项公式是:An=A1*q^(n-1)

若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

(2)求和公式:Sn=nA1(q=1)

Sn=A1(1-q^n)/(1-q)

=(a1-a1q^n)/(1-q)

=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

(前提:q不等于 1)

任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

一般数列的通项求法

一般有:

an=Sn-Sn-1

逐商全乘法(对于后一项与前一项商中含有未知数的数列)。

化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。

读者注

在等差数列中,总有Sn S2n-n S3n-2n

2S2n-n=(S3n-S2n)Sn

即三者是等比数列,同样在等比数列中。三者成等差数列

特殊数列的通项的写法

1,2,3,4,5,6,7,8....... ---------an=n

1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n

2,4,6,8,10,12,14.......-------an=2n

1,3,5,7,9,11,13,15.....-------an=2n-1

-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n

1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)

1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2

1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2

9,99,999,9999,99999,......... ------an=(10^n)-1

1,11,111,1111,11111.......--------an=[(10^n)-1]/9

1,4,9,16,25,36,49,.......------an=n^2

1,2,4,8,16,32......--------an=2^(n-1)

数列前N项和公式的求法

(一)1.等差数列:

通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数

an=ak+(n-k)d ak为第k项数

若a,A,b构成等差数列 则 A=(a+b)/2

2.等差数列前n项和:

设等差数列的前n项和为Sn

即 Sn=a1+a2+...+an;

那么 Sn=na1+n(n-1)d/2

=dn^2(即n的2次方) /2+(a1-d/2)n

还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法

(二)1.等比数列:

通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项

an=a1*q^(n-1,am=a1*q^(m-1))

则an/am=q^(n-m)

(1)an=am*q^(n-m)

(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)

(3)若m+n=p+q 则 am×an=ap×aq

2.等比数列前n项和

设 a1,a2,a3...an构成等比数列

前n项和Sn=a1+a2+a3...an

Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推倒的,这时可能要直接从基本公式推倒过去,所以希望这个公式也要理解)

Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

注: q不等于1;

Sn=na1 注:q=1

求和一般有以下4个方法: 1,不完全归纳法 2 累乘法 3 错位求和法

数学数列高考题!!要答案讲解

am+n=am+an或者am+n=am+an+1

a2=0,而且a2=a1+a1或者a2=a1+a1+1

因为an每一项都为非负实数,那么a1=a2=0

a3>0,a3=a2+a1+1=1

a4=a3+a1=a2+a2=1(楼主应该能推出这个吧)

a100=a10+a90(+1),a90=a10+a80(+1)

最后一定能化得

a100=10*a10+n(n>0,能理解吧?)

因为这个an每一项都是整数(因为前几项就只有整数了嘛)

所以这个a10=1,2或者3

明显a10不能等于1

因为a10=a1+a9(+1)=a1+a2+a7(+2)=a1+a2+a3+a4(+3)

假如没有+3,a10都至少等于a3+a4=2

然后a10=a6+a4(+1)=a3+a3+a4(+2)

同样道理,a10也不会等于2

那么a10=3

高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.

证明:两边同时加n得:An+n=2A(n-1)-2+2n

即An+n=2A(n-1)+2(n-1)

所以得(An+n)/[A(n-1)+(n-1)]=2

所以{An+n}是以2为首项,2为公比的等比数列

(1)an+n=2的n次幂

an=2的n次幂-n

(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)

=2(2的n次-1)-1/2·n(1+n)

数学高考关于数列的题。在线等急

B1+C1=2A1 A不变,B1>C1 得B1>A1>C1

B是按C和A来的,C是按B和A来的,那么就会一大一小(就是说当n为1,3,5.....时B>A>C,当n 为2,4,6.....时C>A>B),其实这都无所谓

Sn是面积,底X高,底就用A,那么就是高了,B+C=2A(A不变,就为常数)

那么当B=C=A时,高最大,B和C 都是前面的C+A和B+A的一半,最后会越来越靠近B=C=A

所以Sn是增的

选B

具体解释那要看你是哪个年级而定了,因为有些题可能是超纲的

如果正在学数列的话,我可以给你这个题目的解题过程

高考数列大题求解

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

数列问题(高考题)越快越好,要有解答。

Xn=PXn-1-QXn-2

Xn-PXn-1+QXn-2=0 --------------(1)

将其化成下面格式(待定系数法):

Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)

将(2)式展开,然后与(1)式的各项比较得:

A+B=P -------------(3)

A*B=Q -------------(4)

因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β

Xn-α*Xn-1=β(Xn-1-αXn-2) ----------------(5)

依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:

Xn-1-α*Xn-2=β(Xn-2-αXn-3)-----------------(5.1)

Xn-2-α*Xn-3=β(Xn-3-αXn-4)-----------------(5.2)

Xn-3-α*Xn-4=β(Xn-4-αXn-5)-----------------(5.3)

......

X4-α*X3=β(X3-αX2)-----------------(5.n-4)

X3-α*X2=β(X2-αX1)-----------------(5.n-3)

(5)*(5.1)*(5.2)*(5.3)*...*(5.n-4)*(5.n-3)并消掉相同项:

Xn-α*Xn-1=(X2-αX1)*β^(n-2)

Xn=(X2-αX1)*β^(n-2) + α*Xn-1

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + α^2*Xn-2

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2 + α^2*Xn-2

... ...

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2+...+(X2-αX1)*β^(n-m)*α^(m-2)+...+(X2-αX1)*α^(n-2) + α^(n-1)*X1

等比数列求和(公比为:α/β) + α^(n-1)*X1

过程比较复杂,建议你参考:

斐波那挈数列通项公式的推导:

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}√5表示根号5

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}