1.2023高考数学答案什么时候出来

2.2021年海南成人高考复习资料:专升本高等数学(二)考试大纲?

3.2008年高考数学海南卷-no.8道选择题怎么做?

海南高考数学答案_海南高考数学答案试卷2023年

2023高考试卷答案一般会在高考完的半个月进行公布

具体的以实时公布时间为准。非官方机构会及时公布各科目的高考答案,但不一定准确。

2023全国各省市高考都用什么卷

高考全国甲卷:(3+文科综合/理科综合);使用省份:云南、四川、广西、贵州、西藏

高考试卷科目:语文、数学、外语、文综、理综;高考全国乙卷:(3+文科综合/理科综合)

使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江.西、河南

高考试卷科目:语文、数学、外语、文综、理综

新高考全国Ⅰ卷:(3+1+2/3+3)

使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等

新高考全国I卷:(3+1+2/3+3)

使用省份:辽宁、重庆、海南

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。

自主命题卷:(3+3)

使用省份:天津、上海、北京

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。

高考试卷为什么各省不一样

1、不同省份使用的教材存在差异

受限于历史原因,原先不同省份之间使用的高中教材,存在一些差异。

教材不一样,必然造成内容编排、知识要点存在差异,从出题角度来说,考察重点也会有所差异,所以使用同一张试卷考试,既不科学又不公平。

2、不同省份之间的教育水平存在差异

即使是使用全国卷的地区,国家也作了区分。高考是个选拔性考试,如何有效区分出不司层次的学生,让他们分别去到对应的高校,是必须考虑的。

2023高考数学答案什么时候出来

2009年普通高等学校招生全国统一考试(宁夏卷)

数学(理工农医类)

第I卷

一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。

(1) 已知集合 ,则

(A) (B)

(C) (D)

(2) 复数

(A)0 (B)2 (C)-2i (D)2

(3)对变量x, y 有观测数据理力争( , )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据( , )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关

(C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关

(4)双曲线 - =1的焦点到渐近线的距离为

(A) (B)2 (C) (D)1

(5)有四个关于三角函数的命题:

: x R, + = : x、y R, sin(x-y)=sinx-siny

: x , =sinx : sinx=cosy x+y=

其中假命题的是

(A) , (B) , (3) , (4) ,

(6)设x,y满足

(A)有最小值2,最大值3 (B)有最小值2,无最大值

(C)有最大值3,无最小值 (D)既无最小值,也无最大值

(7)等比数列 的前n项和为 ,且4 ,2 , 成等差数列。若 =1,则 =

(A)7 (B)8 (3)15 (4)16

(8) 如图,正方体 的棱线长为1,线段 上有两个动点E,F,且 ,则下列结论中错误的是

(A)

(B)

(C)三棱锥 的体积为定值

(D)异面直线 所成的角为定值

(9)已知O,N,P在 所在平面内,且 ,且 ,则点O,N,P依次是 的

(A)重心 外心 垂心 (B)重心 外心 内心

(C)外心 重心 垂心 (D)外心 重心 内心

(注:三角形的三条高线交于一点,此点为三角型的垂心)

(10)如果执行右边的程序框图,输入 ,那么输出的各个数的合等于

(A)3 (B) 3.5 (C) 4 (D)4.5

(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c )为

(A)48+12 (B)48+24 (C)36+12 (D)36+24

(12)用min{a,b,c}表示a,b,c三个数中的最小值

设f(x)=min{ , x+2,10-x} (x 0),则f(x)的最大值为

(A)4 (B)5 (C)6 (D)7

第II卷

二、填空题;本大题共4小题,每小题5分。

(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线 的方程为_____________.

(14)已知函数y=sin( x+ )( >0, - < )的图像如图所示,则 =________________

(15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。

(16)等差数列{ }前n项和为 。已知 + - =0, =38,则m=_______

三、解答题:解答应写出说明文字,证明过程或演算步骤。

(17)(本小题满分12分)

为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。

(18)(本小题满分12分)

某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。

(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;w.w.w.k.s.5.u.c.o.m

(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.

表1:

生产能力分组

人数 4 8

5 3

表2:

生产能力分组

人数 6 y 36 18

(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m

(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u.c.o.m

(19)(本小题满分12分)

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的 倍,P为侧棱SD上的点。

(Ⅰ)求证:AC⊥SD;w.w.w.k.s.5.u.c.o.m

(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,w.w.w.k.s.5.u.c.o.m

使得BE‖平面PAC。若存在,求SE:EC的值;

若不存在,试说明理由。

(20)(本小题满分12分)

已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点, =λ,求点M的轨迹方程,并说明轨迹是什么曲线。w.w.w.k.s.5.u.c.o.m

(21)(本小题满分12分)

已知函数

(I) 如 ,求 的单调区间;

(II) 若 在 单调增加,在 单调减少,证明

<6. w.w.w.k.s.5.u.c.o.m

请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。

(22)本小题满分10分)选修4-1:几何证明选讲w.w.w.k.s.5.u.c.o.m

如图,已知 的两条角平分线 和 相交于H, ,F在 上,

且 。

(I) 证明:B,D,H,E四点共圆:

(II) 证明: 平分 。w.w.w.k.s.5.u.c.o.m

(23)(本小题满分10分)选修4—4:坐标系与参数方程。

已知曲线C : (t为参数), C : ( 为参数)。

(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线;

(2)若C 上的点P对应的参数为 ,Q为C 上的动点,求 中点 到直线

(t为参数)距离的最小值。w.w.w.k.s.5.u.c.o.m

(24)(本小题满分10分)选修4-5:不等式选讲

如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.

(1)将y表示成x的函数;

(2)要使y的值不超过70,x 应该在什么范围内取值?w.w.w.k.s.5.u.c.o.m

2009年普通高校招生全国统一考试

理数数学试题参考答案

一. 选择题

(1) A (2) D (3) C (4) A (5) A (6) B

(7) C (8) D (9) C (10) B (11) A (12) C

二.填空题

(13) (14) (15) 140 (16) 10

三.解答题

(17) 解:

方案一:①需要测量的数据有:A

点到M,N点的俯角 ;B点到M,

N的俯角 ;A,B的距离 d (如图)

所示) . ……….3分

②第一步:计算AM . 由正弦定理 ;

第二步:计算AN . 由正弦定理 ;

第三步:计算MN. 由余弦定理 .

方案二:①需要测量的数据有:

A点到M,N点的俯角 , ;B点到M,N点的府角 , ;A,B的距离 d (如图所示).

②第一步:计算BM . 由正弦定理 ;

第二步:计算BN . 由正弦定理 ;w.w.w.k.s.5.u.c.o.m

第三步:计算MN . 由余弦定理

(18) 解:

(Ⅰ)甲、乙被抽到的概率均为 ,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为w.w.w.k.s.5.u.c.o.m

.

(Ⅱ)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名.

故 ,得 ,

,得 .

频率分布直方图如下

从直方图可以判断:B类工人中个体间的关异程度更小 .

(ii) ,

A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .

w.w.w.k.s.5.u.c.o.m

(19)解法一:

(Ⅰ)连BD,设AC交BD于O,由题意 。在正方形ABCD中, ,所以 ,得 .

(Ⅱ)设正方形边长 ,则 。

又 ,所以 ,

连 ,由(Ⅰ)知 ,所以 , w.w.w.k.s.5.u.c.o.m

且 ,所以 是二面角 的平面角。

由 ,知 ,所以 ,

即二面角 的大小为 。

(Ⅲ)在棱SC上存在一点E,使

由(Ⅱ)可得 ,故可在 上取一点 ,使 ,过 作 的平行线与 的交点即为 。连BN。在 中知 ,又由于 ,故平面 ,得 ,由于 ,故 .

解法二:

(Ⅰ);连 ,设 交于 于 ,由题意知 .以O为坐标原点, 分别为 轴、 轴、 轴正方向,建立坐标系 如图。

设底面边长为 ,则高 。

于是

w.w.w.k.s.5.u.c.o.m

从而

(Ⅱ)由题设知,平面 的一个法向量 ,平面 的一个法向量 ,设所求二面角为 ,则 ,所求二面角的大小为

(Ⅲ)在棱 上存在一点 使 .

由(Ⅱ)知 是平面 的一个法向量,

设 w.w.w.k.s.5.u.c.o.m

即当 时,

而 不在平面 内,故

(20)解:

(Ⅰ)设椭圆长半轴长及半焦距分别为 ,由已知得

,w.w.w.k.s.5.u.c.o.m

所以椭圆 的标准方程为

(Ⅱ)设 ,其中 。由已知 及点 在椭圆 上可得

整理得 ,其中 。

(i) 时。化简得 w.w.w.k.s.5.u.c.o.m

所以点 的轨迹方程为 ,轨迹是两条平行于 轴的线段。

(ii) 时,方程变形为 ,其中

当 时,点 的轨迹为中心在原点、实轴在 轴上的双曲线满足 的部分。

当 时,点 的轨迹为中心在原点、长轴在 轴上的椭圆满足 的部分;

当 时,点 的轨迹为中心在原点、长轴在 轴上的椭圆;

(21)解:

(Ⅰ)当 时, ,故

w.w.w.k.s.5.u.c.o.m

从而 单调减少.

(Ⅱ)

由条件得: 从而

因为 所以

将右边展开,与左边比较系数得, 故

又 由此可得

于是 w.w.w.k.s.5.u.c.o.m

(22)解:

(Ⅰ)在△ABC中,因为∠B=60°,

所以∠BAC+∠BCA=120°.

因为AD,CE是角平分线,

所以∠HAC+∠HCA=60°,

故∠AHC=120°.

于是∠EHD=∠AHC=120°.

因为∠EBD+∠EHD=180°,

所以B,D,H,E四点共圆.

(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°

由(Ⅰ)知B,D,H,E四点共圆,

所以∠CED=∠HBD=30°.

又∠AHE=∠EBD=60°,由已知可得EF⊥AD,

可得∠CEF=30°.

所以CE平分∠DEF. w.w.w.k.s.5.u.c.o.m

(23)解:

(Ⅰ)

为圆心是( ,半径是1的圆.

为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.

(Ⅱ)当 时,

为直线

从而当 时,

(24)解:

(Ⅰ)

(Ⅱ)依题意,x满足

{

解不等式组,其解集为9,23

所以

w.w.w.k.s.5.u.c.o.m

2021年海南成人高考复习资料:专升本高等数学(二)考试大纲?

2023高考数学答案一般会在考后一周内公布。

一般情况下,高考答案一般会在考后一周内公布。高考结束后,非官方机构会及时公布各科目的高考答案,但不一定准确。而准确的官方高考答案要晚几天才会公布。

数学试卷做题技巧:

1、审题要慢、做题要快

审题非常关键,不管是简单题还是难题,都需要对题目要求有非常透彻的了解。并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。

2、灵活处理、有所取舍

数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,不能死钻牛角尖,而是要灵活处理。比如,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件。

2023全国各省市高考考试用卷:

1、高考全国甲卷:(3+文科综合/理科综合)

使用省份:云南、四川、广西、贵州、西藏。

高考试卷科目:语文、数学、外语、文综、理综。

2、高考全国乙卷:(3+文科综合/理科综合)

使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江西、河南。

高考试卷科目:语文、数学、外语、文综、理综。

3、新高考全国Ⅰ卷:(3+1+2/3+3)

使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江。

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。

4、新高考全国Ⅱ卷:(3+1+2/3+3)

使用省份:辽宁、重庆、海南。

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。

5、自主命题卷:(3+3)

使用省份:天津、上海、北京。

高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。

以上数据出自于高三网。

2008年高考数学海南卷-no.8道选择题怎么做?

成考快速报名和免费咨询: 海南成考网在下文为您带来2021年海南成人高考复习资料之专升本高等数学(二)考试大纲的相关内容,供各位考生更好的复习了解!

 

为全面贯彻党的教育方针,落实立德树人根本任务,反映成人高考各学科内容的发展变化,满足成人高校招收培养适应地方经济社会发展所需人才的需要,教育部考试中心组织专家对2011年版复习考试大纲进行了修订。

修订后的大纲为《全国各类成人高等学校招生复习考试大纲(2023年版)》,从2021年起启用。包括高中起点升本、专科和专科起点升本科两类。

2021年海南成人高考复习资料:专升本高等数学(二)考试大纲目录

目录

一篇 高等数学

一章 函数、极限和连续

一节 函数

第二节 极限

同步练习及参考解答

第三节 函数的连续性

同步练习及参考解答

小结

第二章 一元函数微分学

一节 导数与微分

同步练习及参考解答

第二节 洛必达法则

同步练习及参考解答

第三节 导数的应用

同步练习及参考解答

小结

第三章 一元函数积分学

一节 不定积分

同步练习及参考解答

第二节 定积分

同步练习及参考解答

第三节 定积分的应用

同步练习及参考解答

小结

第四章 多元函数微分学

多元函数微分学

同步练习及参考解答

小结

第二篇 概率论初步

第五章 排列与组合

排列与组合

同步练习及参考解答

第六章 概率论初步

一节 随机事件

同步练习及参考解答

第二节 事件的概率

同步练习及参考解答

第三节 条件概率、乘法公式、独立性

同步练习及参考解答

第四节 一维随机变量及其数字特征

同步练习及参考解答

小结

————海南成人高考专升本复习资料———— 以上就是2021年海南成人高考复习资料:专升本高等数学(二)考试大纲的全部内容海南成人高考专升本复习资料栏目为广大考生提供海南成考专科起点升本科复习资料,海南成考专升本复习资料、海南成考专升本政治复习资料、海南成考专升本英语复习资料等相关资讯。

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:对于A:

Q为0时,B=0,此时当A=0时不成立。课本上说0向量与任一非零向量平行,没有规定两个零向量也是平行的。

对于B:

若Q1、Q2全为0,则Q1*A+Q2*B=0,A、B可以为任意向量(可以不为0),这样,A、B就不一定平行了。