高考数学2解析_高考数学解析几何真题
1.2023新高考2卷数学难不难
2.求09年数学全国二卷答案
3.2023年新高考二卷数学难吗
4.2006年高考理科数学试题最后一题及答案详解(全国卷2)
5.高考数学必修二占多少分
6.高三数学试卷分析
1、新课标全国卷I 、卷II都是由教育部专家命题。
2、整体难度:新课标全国卷I >新课标全国卷II,使用全国卷I 的地区考生竞争压力都比较大(所以需要题难来增加区分度),全国卷II地区考生竞争压力比较小,各省自主命题是省内的教育局和大学联合命题的,可能有更针对本地区特色的题目。
3、新课标全国卷I和新课标全国卷II的主要区别:
A新课标全国卷I 是有听力的,而新课标全国卷II没有。
B新课标全国卷II有十道填写单词的题,新课标全国卷I 没有。
作者:刘真
链接:来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
2023新高考2卷数学难不难
函数解析式与函数式相类似,都是求出函数x与y的函数关系,也是高考数学常考考点,下面是我给大家带来的高考数学函数解析式的求解及其常用方法知识点归纳,希望对你有帮助。
高考数学函数解析式的求解及其常用方法知识点(一)
函数解析式的常用求解方法:
(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得
,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
高考数学函数解析式的求解及其常用方法知识点(二)
求函数解析式是中学数学的重要内容,是高考的重要考点之一。本文给出求函数解析式的基本方法,供广大师生参考。
一、定义法
根据函数的定义求其解析式的方法。
例1. 已知
,求
。
解:因为
二、换元法
已知
看成一个整体t,进行换元,从而求出
的方法。
例2. 同例1。
解:令
,所以
,所以
。评注:利用换元法求函数解析式必须考虑?元?的取值范围,即
的定义域。
三、方程组法
根据题意,通过建立方程组求函数解析式的方法。
例3. 已知定义在R上的函数
满足
,求
的解析式。解:
, ①
②
得
,所以
。
评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。
四、特殊化法
通过对某变量取特殊值求函数解析式的方法。
例4. 已知函数
的定义域为R,并对一切实数x,y都有
,求
的解析式。解:令
,令
,所以
,所以
五、待定系数法
已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例5. 已知二次函数
的二次项系数为a,且不等式
的解集为(1,3),方程
有两个相等的实根,求
的解析式。解:因为
解集为(1,3),设
,所以
① 由方程
得
②
因为方程②有两个相等的实根,
所以
,即
解得
又
,将
①得
点击下一页分享更多?高考数学函数解析式的求解及其常用方法知识点归纳
求09年数学全国二卷答案
2023新高考2卷数学难不难如下:
2023新高考数学二卷难吗:还是比较难的。
2023新高考II卷高考数学还是比较难的,虽然考的内容非常基础,但是题目创新性非常高,这给很多考生带来了不小的压力。
高考对人生很重要
五千年的文化沉淀使得每个中国都无法避免错综复杂的人脉关系。而这样的人脉联络往往公私不分。如果像某些人士所设想的那样全部大学自主招生,只会导致有人脉的上,没人脉的下。人脉越广的人通常越接近特权阶级,那么,一条直上直下的通道就被堵死了。
也就是说,没有权,没有钱的阶级就会一辈子生活在社会的最底层,不只自己一辈子。子子孙孙一辈子也都将生活在社会的最底层。
高考在现代化的大城市里面可能只是一场考试,孩子们还可以出国,还可以有很多打算。但是,在小城市,在农村,一次高考,就能决定一个孩子一辈子面朝黄土背朝天还是靠技术吃饭。
相对这个处处被诟病不公平的社会而言,高考是目前为止最公平的方式,它基本不论出身,不论钱财,而提供了一个平台,使得某些人能够越过龙门。
它有多重要?看看每年高考季社会环境的变化就可见一斑。现如今,国人重视高考的程度,绝不亚于77年恢复高考的时候。
你也许会认为这有些过了一一高考它只是一个过程,高考成绩就是一个分数。考得好的,收获一份经验,考得不好的,拥有一份经历,对人的一生而言,并没有那么重要。但是一个高的分数能够换来一纸高的学历,一个够高的分数能够跨进名校的大门。几年之后选择工作或者事业的机会就会不一样,人生的起点也就会不一样。人生,真正的起跑线是从高考开始的。
高考胜出,至少说明在此之前的数年时间里,你主动学习的能力,分析问题的能力,知识的积累,理解,掌握能力,你忍耐寂寞的能力,抗拒诱惑的能力,应对挫折的能力。自律的能力超过了止步于大学之外的同学们以及普通大学的学子们。
2023年新高考二卷数学难吗
2009年全国高考理科数学试题及答案(全国卷Ⅱ)
一选择题:
1. A.
2. B.
3. D.
4.B.
5.C
6. C
7.A.
8. D
9. D
10. C
11. A
12.B
第II卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在答题卡上。
13. 6
14. 9 .
15. 8
16.
三、解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤
17(本小题满分10分)
设 的内角 、 、 的对边长分别为 、 、 , , ,求 。
分析:由 ,易想到先将 代入 得 。然后利用两角和与差的余弦公式展开得 ;又由 ,利用正弦定理进行边角互化,得 ,进而得 .故 。大部分考生做到这里忽略了检验,事实上,当 时,由 ,进而得 ,矛盾,应舍去。
也可利用若 则 从而舍去 。不过这种方法学生不易想到。
评析:本小题考生得分易,但得满分难。
18(本小题满分12分)
如图,直三棱柱 中, 、 分别为 、 的中点, 平面
(I)证明:
(II)设二面角 为60°,求 与平面 所成的角的大小。
(I)分析一:连结BE, 为直三棱柱,
为 的中点, 。又 平面 ,
(射影相等的两条斜线段相等)而 平面 ,
(相等的斜线段的射影相等)。
分析二:取 的中点 ,证四边形 为平行四边形,进而证 ∥ , ,得 也可。
分析三:利用空间向量的方法。具体解法略。
(II)分析一:求 与平面 所成的线面角,只需求点 到面 的距离即可。
作 于 ,连 ,则 , 为二面角 的平面角, .不妨设 ,则 .在 中,由 ,易得 .
设点 到面 的距离为 , 与平面 所成的角为 。利用 ,可求得 ,又可求得
即 与平面 所成的角为
分析二:作出 与平面 所成的角再行求解。如图可证得 ,所以面 。由分析一易知:四边形 为正方形,连 ,并设交点为 ,则 , 为 在面 内的射影。 。以下略。
分析三:利用空间向量的方法求出面 的法向量 ,则 与平面 所成的角即为 与法向量 的夹角的余角。具体解法详见高考试题参考答案。
总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会兼顾双方的利益。
19(本小题满分12分)
设数列 的前 项和为 已知
(I)设 ,证明数列 是等比数列
(II)求数列 的通项公式。
解:(I)由 及 ,有
由 ,...①则当 时,有 .....②
②-①得
又 , 是首项 ,公比为2的等比数列.
(II)由(I)可得 ,
数列 是首项为 ,公差为 的等比数列.
,
评析:第(I)问思路明确,只需利用已知条件寻找 .
第(II)问中由(I)易得 ,这个递推式明显是一个构造新数列的模型: ,主要的处理手段是两边除以 .
总体来说,09年高考理科数学全国I、Ⅱ这两套试题都将数列题前置,主要考查构造新数列(全国I还考查了利用错位相减法求前n项和的方法),一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。
20(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记 表示抽取的3名工人中男工人数,求 的分布列及数学期望。
分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。
(II)在第一问的基础上,这一问处理起来也并不困难。
从甲组抽取的工人中恰有1名女工人的概率
(III) 的可能取值为0,1,2,3
, ,
,
分布列及期望略。
评析:本题较常规,比08年的概率统计题要容易。在计算 时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。
(21)(本小题满分12分)
已知椭圆 的离心率为 ,过右焦点F的直线 与 相交于 、 两点,当 的斜率为1时,坐标原点 到 的距离为
(I)求 , 的值;
(II) 上是否存在点P,使得当 绕F转到某一位置时,有 成立?
若存在,求出所有的P的坐标与 的方程;若不存在,说明理由。
解:(I)设 ,直线 ,由坐标原点 到 的距离为
则 ,解得 .又 .
(II)由(I)知椭圆的方程为 .设 、
由题意知 的斜率为一定不为0,故不妨设
代入椭圆的方程中整理得 ,显然 。
由韦达定理有: ........①
.假设存在点P,使 成立,则其充要条件为:
点 ,点P在椭圆上,即 。
整理得 。
又 在椭圆上,即 .
故 ................................②
将 及①代入②解得
, = ,即 .
当 ;
当 .
评析:处理解析几何题,学生主要是在“算”上的功夫不够。所谓“算”,主要讲的是算理和算法。算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质。有时候算理和算法并不是截然区分的。例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点。
22.(本小题满分12分)
设函数 有两个极值点 ,且
(I)求 的取值范围,并讨论 的单调性;
(II)证明:
解: (I)
令 ,其对称轴为 。由题意知 是方程 的两个均大于 的不相等的实根,其充要条件为 ,得
⑴当 时, 在 内为增函数;
⑵当 时, 在 内为减函数;
⑶当 时, 在 内为增函数;
(II)由(I) ,
设 ,
则
⑴当 时, 在 单调递增;
⑵当 时, , 在 单调递减。
有些特殊符号在这打不出来 给个邮箱我吧 我发给你
2006年高考理科数学试题最后一题及答案详解(全国卷2)
新二的难度也偏高。
1、总体变化的新教材知识点设置走向全国卷考试纲。使用新教材后,从各区统考、市重月考题的难易度来看,2023年高考数学卷的难易度上升,接近全国卷的概率较高。
2、必修一反函数部分在新教材中中标星级,不再作为考察点。有些普高学校不再教反函数的内容了。
3、必修二旧教材高一教三角函数和数列。新教材是三角函数、复数和向量。三角函数的部分没什么变化。追加了积化和差和差化的积式。
(本来教材中就没有涉及,因为是在考试中使用,所以影响不大。多个部分,在新教材中,目雀迟标选择的多个三角表示形式和辐角的主值变多,意味着多个三角表示可以在大问题上直接使用。在平面矢量一章中明确了三角形重心坐标的求法,这意味着重心公式可以直接使用。
4、必修三旧教材高二上原为行列式和解析几何,新教材中册除了行列式和矩阵部分,改为立体几何和概率统计,解析几何置于选一。由于分析几何内容受到限制,意味着在立体几何板块中,学生用纯几何方法解题的能力得到了提高。
5、选择性必修课包括分析几何(直角坐标系、圆锥)、空间矢量和数列。数列的一部分消除了旧教材中的极限部分,同样接近全国卷的考纲。解析几何、空间矢量部分与旧教材相差不大,解析几何主要增加了关于第二定义的知识点,并与全国数学教材统一。
择一的内容是上海卷多年考察的重点难点,试卷压轴的大问题往往是考察解析几何和数列。因此,学生们应着力于这些内容,努力弄清直线、椭圆、双曲线、抛物线的定义、性质,学好空间向量解题途径,使之在考试中获得更多的分数。
6、选择性必修二限选二增加一章导数内容,与旧教材无关。在全国卷的数学中,常常将导数部分的出题组合起来考察导数、单调性、数形结合等内容,但上海卷如何考察导数知识点还不清楚。
选一式还包括排圆岁搜列组合和概率深化,概率部分较以前的内容有所扩展,难度加大,增加了有限样本空间、百分率、全概率公式等内容,有可能给高考带来数学期待等新的知识点。但这部分往往只涉及一个填空题,掌握公式,多做题理解套路,问题不大。
7、选择性必修三数学建模内容作为限制三单独编成新教材。这表明国家强调“数橘历学趋向应用”的理念。
高考数学必修二占多少分
我兴奋的找出我06年留下的高考答案,结果发现数学是全国1的,晕啦!!
第一问很容易,随便算了一下A1=1/2,A2=1/6;
第二个问常规思路:
把(Sn-1)带入方程,得Sn的平方-(2+An)Sn+1=0;求出Sn(用An来表示)
然后用Sn-S(n-1)=(相减的结果)=An,应该能求出An
数学归纳法:
由A1,A2猜想An=1/n(n+1)
假设 n=1,k,k+1 自己慢慢算吧,这题其实不难,现在高考数学的最后一天往往不是最难得了,所以在高考的时候千万不要看都不看最后一题。
高三数学试卷分析
25分左右。
根据查询开心经验网得知,高考数学必修2分两个部分,一个是立体几何,高考一般一个选择,一个填空,一个大题。解析几何部分是圆锥曲线的基础,一般不直接考。所以必修二占分大概25分左右,占高考总分的六分之一。
高考数学必修2是比较基础的一部分,不是太难,注意一下细节就可以。空间几何要注意几何定理,有很多东西在平面上适用但是在三维空间上不适用,这时就要用到一些定理,详细了解定理的证明。
高三数学试卷分析1
一、试卷特点分析
1.覆盖知识面广,重点考查主干
除了概率与统计以外,试题全面覆盖教材中知识模块,知识条目的覆盖率在50%左右。除主干知识重点考查外,已广泛涉及复数、集合、三视图,程序框图、逻辑与推理、排列组合、线性规划、平面向量等。还注重了数学的现实情境和历史文化,如理科第7、9、14、18题,文科第5、19题。
试卷穾出学科的主干内容:函数与导数、三角、数列、立体几何、解析几何以及不等式在试卷中占有较高的比例,整体结构合理,达到必要的考查深度。
试卷还注意知识交汇的考查,如理科第5、14题 ,文科第7、11、19题。
2.注重思想方法,突显能力素养
七个基本数学思想在试卷中都有涉及。解题方法有坐标法、三角法、向量法、待定系数法、代入法、消元法、配方法、换元法等。
六大数学核心素养:运算求解能力在绝大多数题目中都有体现,逻辑推理也有鲜明体现,直观想象体现在用数形结合的题目中,数学建模与数据分析是对现实问题进行抽象,用数学语言表达和解决问题的过程。同时也自然考查了阅读理解和知识迁移能力,也关注到数学的应用。
3.贴近教材提高,增大思维难度
试卷的知识构成、题型构成严格按照考纲命制,有近80%的题目体现教材的基础知识、基本技能与基本方法。选填题多数题目直接来自教材的基本概念、基本方法、基本运算或只做简单的变形,起点不高,坡度不陡,大多只涉及两三个知识条目,仅进行两三步演算,切合多数学生实际,虽然后两三题加大了思维量和运算量,但还属中档偏难一点。选择题思维量较大的理科第10、11、12题,文科第8、11、12题。填空题思维量较大的理科第15、16题,文科第15、16题。解答题思维量与运算量较大的理科第18(2)、20、21题,文科第19(2)、20、21题。
4.体现目标层次,文理差异互补
每类题型易中难搭配,从易到难。
文理科试卷除了四个小题(文、理第3题,文10理6,文理第13题,文14理4)及二选一的第22题完全相同外,其他题目都不相同。实现差异主要是撤换文科不考内容(如排列组合),降低题目难度(姐妹题)及调换前后位置三种形式。对理科少考的指数函数问题,文科多考一点。
5.重视数学文化,呈现创新元素
新考纲突出了增加数学文化内容,理科试卷在考查数学文化方面做了一些努力和尝试。通过对材料的创新设计使考生深刻地认识到中华民族优秀传统文化中注重算法的特点,为试卷注入了新的活力。
试题中出现中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。德国数学家C.F.高斯是在1801年才建立起同余理论的,大衍求一术反映了中国古代数学的高度成就。在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:
“三人同行七十稀,五树梅花廿一枝,
七子团圆正半月,除百零五便得知。”
这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。"孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。列成算式就是:
N=70×2+21×3+15×2-2×105。
这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式
N=70×R1+21×R2+15×R3-P×105(p是整数)。
试卷通过设置综合性、开放性、探索性试题,具有情境创新、情境多样、思维灵活的特点,既考查了学生的基本知识、基本技能,又考查了学生基本思想、基本体验活动,穾出考查学生的创新能力。
二、对下一阶段精准备考,高效复习的建议
第一:进一步夯实基础
做到百分之百的掌握,一清二楚的理解,准确无误的应用,融汇贯通的领悟。
第二:更重视通性通法
回归朴素本原,淡化特殊技巧,掌握应用概念、性质、定理等解决问题的基本方法、基本技能,也就是应用数学思想分析问题、理解问题、把握问题、探寻解题方法的基本思维方法。
第三:最重要的是形成数学核心素养
以基本能力加综合能力的培养为导向,统领三基的落实,在知识深化理解、应用中提升能力,形成素荞。
第四:再强调回归教材
对教材的例习题、相关结论要熟悉,有的结论虽不能作为定理公式应用,但可以启发思路,简化思维过程。
第五:特穾出自牫解决问题的"独立性"
面对试题需要考生自我分析问题、自我判断、自我选择方法、遇到困难自我突围。这就要求学生具有独立思考的能力、选择简捷解题方法的辨别能力、逻辑严谨的表达能力,判断结论答案合理正确的判断能力,而这些能力需在平时的解题过程中学习、训练,在教师引导下的自我反思感悟,有了自已的认识与体验,从而真正做到精准备考、高效复习。
高三数学试卷分析2选择题
本次西城区二模考试的选择题排布如下:1、集合,2、向量,3、函数值域,4、抛物线,5、不等式与逻辑用语,6、线性规划,7、三视图,8、函数参数的取值范围。其中第5题很多学生以前应该做过。这些题目基本上就是以前高频问题进行的简单改编。第8题,需要学生对于特殊函数、不等式、及范围问题的解题技巧能够综合掌握。当然,对学生而言,必须要首先把基本题目做好,如果里面出现问题,比如第4题不熟悉抛物线的焦准距与参数的关系,第7题三视图还原还有问题等,则需加以重点强化。
填空题
填空题考察的内容排布如下:9、复数,10、程序框图,11、解三角形,12、直线和圆,13、分段函数,14、计数原理。
第9题考查了“共轭”的概念,帮助学生们进一步检查知识掌握的完整性。第12题,涉及到“对称”的概念,学生们需要抓住“对称”这个条件对应的代数转化。13题分段函数,一定要熟练掌握数形结合的分析方法,注意填空题有可能会有多解。14题是一个篇幅比较大的题目,一方面,考察学生的阅读和关键数据提炼能力,另外,需要学生的逻辑思维比较清晰,必要时也可画图辅助分析。此外,学生能够有良好的心理素质、足够的信心去处理题目也是必要的。实际上题目并不难。
解答题
大题方面,15题考查的是一个正切函数,在三角这个模块的高考考察中出现频次要低一些,学生需注意“锐角”条件及规范的解答过程。16题的统计概率,题材为“餐厅满意度调查”,里面有直方图和频数分布表,该图是学生平时训练比较多的模式,理解难度比一模要简单一些,问法也较一模简单,多数学生可以做好。17题的`混合数列求和是最简单的模式,一个等差数列加上一个等比数列,构成一个新的数列,只需要注意审题,第二问的情况里面,第一问里的条件不成立。18题立体几何,包括垂直、平行的证明,以及一个是否存在类的问题,非常经典的构造,考生需注意解答过程中书写规范,以及加快分析速度节约解题时间。
最后说一下经常做压轴大题的导数与圆锥。今年西城二模导数为19题,圆锥作为最后一题。从考法上来说,19题的导数模型比较复杂,有分式、有对数,第二小问的证明“极小值大于极大值”,与以往相比具有一定新颖性,而证明题对学生也具有相当的挑战,很多学生从思路到过程平时练得都比较少。二模之后,对于基本知识掌握到一定程度的学生而言,需要着重强化证明题。
第20题,三个小问分别是标准方程、面积最值,线段大小关系判断。本题是经典圆锥曲线构造,分析难度一般低于导数最为最后一题的情形,但对考生数学量的表达能力与计算能力的要求会比较高。在最后的阶段,学生们需要再次巩固计算能力,保持手感,以应对高考中可能出现的计算量大的问题。
总体而言,本次西城二模出题比较“稳重”,很好地检验了学生的基本功及应对较热门考察套路的能力。对于水平较高的学生,做好选填大题的压轴题目,能够起到一定的训练效果,同时,注意后期加强证明题的练习,加强答题过程细节的练习,及时总结失分原因并提炼“考前写给自己的最后总结”,注意合理安排时间,寻找对提分“增量”最大的点,加以强化,注意解题时间分配的监测以思考遇到难题时的应对策略。希望考生们,能在最后一个月的高考冲刺中,抓住最后可以强化的点,再做出一些突破,并调整好状态,在高考中考出理想成绩。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。