分数线与运算符号要对齐吗_分数线是运算符号吗
属于符号
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。4、比较分数的大小:⑴分母相同的分数,分子大的那个分数就大。⑵分子相同的分数,分母小的那个分数就大。⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。5、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数⑴真分数:分子比分母小的'分数叫做真分数。真分数小于1。⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。6、分数和除法的关系及分数的基本性质⑴除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。有时是一条斜杠“/”,斜杠左边是分子,右边是分母。读作几分之几。
数学分数线概念
分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。有时是一条斜杠“/”,斜杠左边是分子,右边是分母。在某种意义上说,分数线等于除号和比号。分子是被除数,分母是除数;分子在比号左边,分母在比号右边。
参考:比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。也是分数线的创始人。
什么是分数线分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1 分子等于被除数,- 分数线等于除号,2 分母等于除数,而0.5分数值则等于商。
分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。分数的基本性质:分数的分子和分母都乘以或都除以同一个不为零的数,所得到的分数与原分数的大小相等。
分数的由来说分数的历史,得从三千多年前的埃及说起。
三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样。印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是7/3米.像3/7就是一种新的数,我们把它叫做分数。
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征。例如,一个西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要—除法运算的需要而产生的。
分数中为什么把分数线上的叫分子,分数线下的叫分母?所谓分数,就是把数来进行划分的意思,所以,分数线上面的那个数于是便成了多少等分之一,而下面那个数则表示一个数的整体。现在再来看为什么上面的叫“分子”的问题,这涉及到“分数单位”,当你把一个数分成若干等份的时候,取其中之一份就是多少分之一,这就是分数单位。只有当分数线上下的数都相等的时候,该分数的值才会等于1,其他任何情况下,都会小于1。既然通常(也就是真分数)分数线上面的数都比下面的数小,上面的小的数称作“子”,下面的大的数称作“母”就很好理解了。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。